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Minimal Harmonic Measure on Complementary Regions

Roger W. Barnard, Leah Cole, and Alexander Yu. Solynin

(Communicated by Doron Lubinsky)

Abstract. For any two points a1 and a2 in an open disk ∆ on the complex
sphere C, let L be a curve separating a1 from a2 on C, which splits C into two
complementary regions B1 3 a1 and B2 3 a2. Let l be the part of this curve
lying in ∆̄. In this note we study how small the average harmonic measure

1

2
(ω(a1, l, B1) + ω(a2, l, B2))

can be. This question can be interpreted as a problem on the minimal average
temperature at two points of a long cylinder composed of two media separated
by a heating membrane each of which contains a reference point.

Keywords. Harmonic measure, module of a quadrilateral, complete elliptic
integral.
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1. Introduction to the problem

Let a closed (non-Jordan in general) curve L split the complex sphere C into
two complementary regions B1 and B2 containing points a1 and a2 respectively.
Let ∆ be an open disk containing a1 and a2 and let l1, l2 be parts of boundaries
∂B1 and ∂B2 lying in ∆̄.

How small compared to L can the set l = l1 ∪ l2 be? This is the main question
studied in this note. For a measure of ”smallness” it is natural to choose the
average of harmonic measures of the sets l1 and l2 evaluated at the reference
points a1 and a2. In this way we arrive at the following extremal problem.

Problem P∆(a1, a2). Find the minimization of the sum

(1.1)
1

2
(ω(a1, l1, B1) + ω(a2, l2, B2)) → inf .

Received May 13, 2002.
The research of the third author was supported in part by Russian Fund for Fundamental
Research, grant no. 00-01-00118a.

ISSN 1617-9447/$ 2.50 c© 2002 Heldermann Verlag



230 R. W. Barnard, L. Cole, and A. Yu. Solynin CMFT

Here ω(z, E,D) denotes the harmonic measure of the set E ⊂ ∂D with respect
to the region D evaluated at the point z. That is, ω(z, E,D) is the bounded
harmonic function having boundary values 1 a.e. on E and 0 a.e. on ∂D \ E.
The infimum in (1.1) is taken among all curves L separating a1 from a2 on C as
it is illustrated in Figure 1. For properties of the harmonic measure we refer to
[A1, Ch. 1.1] or [G, Ch. 8].
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Figure 1. Competing domains of Problem P∆(a1, a2).

Putting more data one can additionally require that L traces through a prescribed
set of contact points b1, . . . , bn lying in ∆′ = ∆̄ \ {a1, a2}. In this paper we deal
with the simplest case when the set of contact points is empty. A set of similar
extremal problems on the harmonic measure was studied in [S1].

Since the harmonic measure is conformally invariant, the problem formulated
above is invariant under Möbius maps. Therefore in what follows we may assume
without loss of generality that ∆ is the unit disk ∆ = {z : |z| < 1} and a1 = r,
a2 = −r, where r, 0 < r < 1 is defined by

log
1 + r

1− r
= ρ∆(a1, a2),

where ρ∆(a1, a2) stands for the hyperbolic distance between a1 and a2 with re-
spect to the disk ∆, see [A1, G]. Thus the Problem P∆(a1, a2) actually depends
on one positive parameter 0 < r < 1 only.

In Section 2, we use results from the theory of modules of families of curves to
give a qualitative solution of Problem P∆(a, b) by including the minimal harmonic
measure into a one-parameter family of functions. Then, in Section 3 we show
that for every value of the parameter r, 0 < r < 1, except for one special
value r0 = g − √g = .34601 . . ., where g = (1 +

√
5)/2 is the golden ratio, the

corresponding one-parametric family of configurations contains a unique minimal
configuration that is either symmetric or degenerate. In the last section we
consider possible generalizations and discuss some open questions.
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2. Problem P(r)

2.1. Reduction of the problem. First we reduce the problem considered to
a simpler one. Note that the assumptions of the problem imply the existence of
a continuum (i.e. connected compact set) E ⊂ ∆̄ ∩ L, which splits ∆ into two
disjoint regions D1 3 r and D2 3 −r. Thus, ∆ \E = D1 ∪D2. By the Carleman
Principle for the harmonic measure (or essentially by the Maximum Principle for
harmonic functions),

1

2
(ω(r, l1, B1) + ω(−r, l2, B2)) ≥

1

2
(ω(r, E,D1) + ω(−r, E,D2))

and therefore the infimum of Problem P∆(a1, a2) (1.1) is greater or equal to the
infimum

(2.1) Ω(r) = inf
1

2
(ω(r, E,D1) + ω(−r, E,D2))

taken among the set of all continua E ⊂ ∆̄ that split ∆ into a pair of regions
described above. Standard approximation arguments applied to the extremal
configurations of Problem (2.1) described in Theorem 1, Section 3 show that the
infima in (1.1) and (2.1) actually coincide. In what follows the minimization
Problem (2.1) will be denoted by P(r).
One advantage of formulation (2.1) compared to (1.1) is that the infimum in
(2.1) is realized for certain continuum E∗ or equivalently for a certain pair of
non-overlapping regions D∗

1, D
∗
2 one of which but not both may be degenerate.

2.2. Physical motivation. It might also be inter-
esting to note that in formulation (2.1) our problem
models a steady-state heat flow in a long cylindrical
solid bar (one can have in mind, for instance, the
plutonium bars in a nuclear reactor). Assume that
the bar is composed of two media separated by a
thin membrane having the same shape in each hor-
izontal section as it is shown in Figure 2. Assume
that we cool this bar along the cylindrical surface
keeping the temperature at least t0 at each of its
points and assume that, in order to be operational,
the membrane requires a temperature of at least
t1 > t0 at any of its points.
Assume next that in controlling the temperature at
two points, a1 in the first medium and a2 in the sec-
ond medium, we are interested in keeping the aver-
age temperature at these points as small as possible.
What is the optimal design of the membrane that
corresponds to the minimal average temperature?
This question is equivalent to our Problem (2.1).

a1

a2

L

Figure 2. The min-
imal average temper-
ature problem.
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2.3. Extremal partition and module of a triad. Problem (2.1) is also con-
nected with a problem on the extremal partition of ∆ into a pair of disjoint
quadrilaterals. Following J. Jenkins [J3], by a triad (a, α,D) we shall mean a
simply connected region D on C with a fixed closed arc α on its boundary and a
fixed point a inside D. Let {Q} be the set of all quadrilaterals Q in D′ = D\{a}
each of which has a distinguished pair of sides on the complementary boundary
arc β = ∂D \ α such that curves joining the distinguished sides of Q separate a
from α inside D. Let modQ denote the module of Q with respect to the family
of curves in D joining the distinguished sides of Q. Let w = f(z) map Q confor-
mally onto a rectangle {w : |Rew| < a, | Imw| < b} such that the distinguished
sides of Q map onto the vertical sides of the rectangle. Then, modQ = b/a. For
properties of the module of a quadrilateral we refer to [A1, A2, D, J2, S2].

It is well known [J1, J3], that there is a unique quadrilateral Q0 = Q0(a, α,D)
in the family {Q} having the maximal module:

modQ0 = max
{Q}

{modQ}.

Let s be a conformal mapping of D onto ∆ normalized by the condition s(a) = 0,
s(α) = {eiθ : |θ − π| ≤ ψ0} with ψ0 = πω, where ω = ω(a, α,D). Let t = s−1.
Then the extremal quadrilateral Q0 is the t- image of the quadrilateral Q(ψ0) =
∆ \ [0, 1] with vertices at the points 1 + i0, −e−iψ0 , −eiψ0 , and 1− i0.

By the module of a triad (a, α,D) we shall mean the module

m(Q0) = m(Q0(a, α,D)).

The latter module and the harmonic measure ω = ω(a, α,D) are linked via a
well known formula attributed to J. Hersch:

(2.2) m(Q0) =
K(tan2(π(1− ω)/4))

K′(tan2(π(1− ω)/4))
,

where K denotes the complete elliptic integral of the first kind and

K′(τ) = K(
√
1− τ 2).

Later on similar notation E and E′ will be used for the complete elliptic integrals
of the second kind. In what follows it will be convenient to employ the notation

(2.3) µ(s) =
π

2

K′(s)

K(s)

for the quotient of the complete elliptic integrals, see [AVV, Chapter 5], which
contains numerous useful properties of µ(s) and is accompanied by a software
package useful in numerical computations concerning µ(s). Equation (2.2) shows
that m = m(Q0) decreases from +∞ to 0 when ω runs from 0 to 1.
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2.4. Harmonic measure and extremal quadrilaterals. Let

ω∗(r) = ω(−r, [r, 1],∆).

Carleman’s Principle and a symmetrization result of J. Krzyz [Kr], see also [B,
Theorem 6.1], imply that

ω(−r, E,D2) ≥ ω∗(r),

with the sign of equality only for E = [r, 1]. For a fixed ω0, ω∗(r) < ω0 < 1,
consider Problem (2.1) under an additional constraint

(2.4) ω(−r, E,D2) = ω0.

Our previous analysis shows that Problem (2.1), (2.4) is equivalent to the follow-
ing problem on the modules. Let Q1, Q2 be a pair of disjoint quadrilaterals in
∆′ = ∆ \ {±r} each of which has a pair of distinguished sides on T. We assume
in addition that curves γ ⊂ Q1 joining the distinguished sides of Q1 separate
the point r from Q2 and the point −r inside ∆′ and that similar curves γ ⊂ Q2
separate the point −r from Q1 and r inside ∆′. The problem is to find

modQ1 → max

among all pairs of quadrilaterals Q1, Q2 satisfying the above mentioned condi-
tions and such that

modQ2 = m0 =
π

2
µ

(

tan2
π(1− ω0)

4

)

.

Let γ1 denote the non-distinguished side of Q1 that does not separate Q1 from Q2
and let γ2 be a similar side of Q2. Then we can consider a quadrilateral Q1,2 =
∆ \ (γ1 ∪ γ2) with γ1 and γ2 as its non-distinguished sides.

The quadrilateral Q1,2 separates the points r and −r in ∆′. Therefore as a very
special case of the Jenkins Theorem in [J1] we get the inequality

(2.5) modQ1,2 ≤ modQ(r),

where Q(r) denotes the quadrilateral ∆\([−1,−r]∪ [r, 1]) with the distinguished
sides T+ = {z ∈ T : Im z > 0} and T− = {z ∈ T : Im z < 0}. Equality
occurs in (2.5) if and only if Q1,2 = Q(r). Inequality (2.5) follows also from a
symmetrization result of O. Teichmüller, see [A2].

By Grötzsch’s Lemma, see [J2, Ch.2],

modQ1 +modQ2 ≤ modQ1,2,

which together with 2.5 leads to the inequality

(2.6) modQ1 ≤ modQ(r)−m0.

Let fr map Q1,2 conformally onto a suitable rectangle

Π(a) = {w : | Imw| < 1, |Rew| < a}, a > 0,
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Figure 3. Extremal rectangles for r = 0.5.

such that the slits (−1,−r] and [r, 1) correspond to the left and right vertical
sides of Π(a), respectively, and let Fr be a function corresponding in a similar
way to the extremal quadrilateral Q(r). Equality in (2.6) occurs if and only if
Q1,2 = Q(r) and the sets Π1 = fr(Q1) and Π2 = fr(Q2) are two complementary
rectangles in Π(a), see Figure 3.

Combining all of these results we obtain Lemma 1, solving Problem (2.1), (2.4).

Lemma 1. For a fixed ω0, ω∗(r) < ω0 < 1, there is a unique pair of domains

D∗
1, D

∗
2 minimizing the sum in (2.1) under the additional constraint

ω(−r, E,D2) = ω0.

Moreover,

D∗
1 = D1(a, b) = Gr(Π(b, a)) ∪ [r, 1),

D∗
2 = D2(a, b) = Gr(Π(−a, b)) ∪ (−1,−r],

where Gr = F−1
r and the parameters a and b, −a < b < a < ∞, are defined by

the equations

(2.7) a =
π

µ(r2)
, b =

π

µ
(

tan2 π(1−ω0)
4

) − π

µ(r2)
.
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The minimum in (2.1) is

(2.8) Ω(a, b) = 1− 2

π

(

tan−1
√
τ1 + tan−1

√
τ2
)

with τ1 and τ2 defined by

(2.9)
π

µ(τ1)
= a− b,

π

µ(τ2)
= a+ b,

where µ(s) is defined in (2.3).

3. Minimal configurations

We have shown in Section 2 that the extremal configurations of Problem (2.1) are
among the configurations D1(a, b), D2(a, b) described by Lemma 1 with a defined
by (2.7) and some b such that −a ≤ b ≤ a. Now we will study how the minimal
average harmonic measure Ω(a, b) depends on the parameter b. Equations (2.8)
and (2.9) show that for a fixed a, Ω(a, b) is an even function of b. Therefore the
configuration D1(a,−b), D2(a,−b) provides the extremal value for Ω(a, b) if and
only if the configuration D1(a, b), D2(a, b) does. This allows us to deal in what
follows with non negative values of b only. First we examine the limit cases.

Since Ω(a, b) is even in b, b = 0 is always a critical point of Ω(a, b) and corresponds
to the symmetric configuration D1(a, 0) = ∆+, D2(a, 0) = ∆−, where

∆+ = {z ∈ ∆ : Re z > 0}, ∆− = ∆ \ ∆̄+.
Let us(r) = ω(r, I,D1(a, 0)), where I = [−i, i].
To find ω(r, I,D1(a, 0)), we note that the function ϕ(z) = iz(1− z2)−1 maps ∆+

conformally onto the upper half-plane H such that ϕ(I) = [−1/2, 1/2] and ϕ(r) =
ir(1− r2)−1. Since harmonic measure is invariant under conformal mapping,

ω(r, I,D1(a, 0)) = ω(ϕ(r), [−1/2, 1/2],H).

Let 2απ denote the angle formed by the segments [−1/2, ϕ(r)] and [1/2, ϕ(r)] at
the point ϕ(r). Then 2α = (2/π) tan−1((1− r2)/2r). It is well known [A1] that
ω(ϕ(r), [−1/2, 1/2],H) = 2α. Therefore,

(3.1) us(r) =
2

π
tan−1

1− r2

2r
= 1− 4

π
tan−1 r.

In the second limit case, b = a. In this case D1(a, a) = ∅, D2(a, a) = ∆(r),
where ∆(r) = ∆ \ I(r), I(r) = [r, 1], where a and r are related via (2.7). Using
a conformal mapping from ∆(r) onto H,

ϕ1(z) = ϕ

(

(

r − z

1− rz

)1/2
)

,
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with ϕ defined above, we can compute as in the symmetric case,

(3.2) ud(r) =
1

2
(1 + ω(r, I(r), D2(a, a))) =

1

2
+

1

π
tan−1

(1− r)2

2
√

2r(1 + r2)
.

The graphs of us(r), ud(r), and the graph of the function un(r), which corre-
sponds to a possible nondegenerate nonsymmetric configuration, as it will be
explained later, are plotted in Figure 4.
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Figure 4. Graphs of us, ud, and un.

Lemma 2. For 0 < r < 1, the equation us(r) = ud(r) has a unique solution

r0 = g −√g = .34601 . . ., where g = (1 +
√
5)/2 is the golden ratio and

ud(r) < us(r) for 0 < r < r0,

ud(r) > us(r) for r0 < r < 1.

Proof. By (3.1), (3.2), the equation us(r) = ud(r) is equivalent to

(3.3) tan−1
1− r2

2r
=
π

4
+

1

2
tan−1

(r − 1)2

2
√

2r(r2 + 1)
.

Taking the tangent of the both sides in (3.3), we obtain

1− r2

2r
=

2r2 + 2− 2
√
2r3 + 2r

−4r + 2
√
2r3 + 2r

.

After some algebra this leads to the equation

(3.4) r4 − 2r3 − 2r2 − 2r + 1 = 0.

Since
d

dr
(r4 − 2r3 − 2r2 − 2r + 1) = 2[2r(r2 − 1)− (3r2 + 1)]
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is clearly negative on 0 < r < 1, (3.4) and therefore the equation us(r) = ud(r)
has a unique solution r0 in 0 < r < 1. Solving equation (3.4) by radicals we
obtain

r0 =
1 +

√
5

2
−

√

1 +
√
5

2
= .34601 . . .

This solution of (3.4) can be found also with Mathematica.

Lemma 2 shows, in particular, that the symmetric configuration is not extremal
for 0 < r < r0 and the degenerate configuration is not extremal for r0 < r < 1.

To find values τ1 and τ2 minimizing the function (2.8), we consider a minimization
problem

(3.5) m(x1, x2) = 1− 2

π

(

tan−1
√
x1 + tan−1

√
x2
)

→ min

under the constraint

(3.6)
1

µ(x1)
+

1

µ(x2)
=

2

µ(r2)
.

Differentiating the Lagrange function

Φ(x1, x2) = 1− 2

π

(

tan−1
√
x1 + tan−1

√
x2
)

− λ

(

1

µ(x1)
+

1

µ(x2)

)

of problem (3.5), (3.6) and using the differentiation formula

(3.7) µ′(s) =
−π2

4s(1− s2)K′2(s)
,

see [AVV, p. 82], we find

−π
2
Φx1

=
1

2
√
x1(1 + x1)

+ λ
π

2x1(1− x12)K′2(x1)
,

−π
2
Φx2

=
1

2
√
x2(1 + x2)

+ λ
π

2x2(1− x22)K′2(x2)
.

Therefore the critical values of x1, x2 of problem (3.5), (3.6) can be found from
the equation

(3.8)
√
x(1− x)K′2(x) = t

with t = −πλ.
Lemma 3. Let f(x) =

√
x(1 − x)K′2(x). There is x0 = .04771 . . . such that

f(x) increases from 0 to t0 = f(x0) = 4.08366 . . . on 0 < x < x0 and decreases

from t0 to 0 on x0 < x < 1.
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Proof. Let g =
√
f . Since

d

dx
K(x) =

E(x)− (1− x2)K(x)

x(1− x2)
,

see [AVV, p. 50], differentiating we obtain

g′(x) =
u(x)

v(x)
,

where

(3.9) u(x) = (1− x)2K′(x)− 4E′(x), v(x) = 4x3/4(1 + x)
√
1− x.

Since v(x) is positive on 0 < x < 1, we need to show that u(x) changes its sign
only once in the interval 0 < x < 1.

First we show that u(x) is convex on 0 < x < 1. Differentiating twice we find

u′′(x) =
u1(x)

v1(x)
,

where

(3.10) u1(x) = q(x)E′(x)

(

K′(x)

E′(x)
+
p(x)

q(x)

)

with

p(x) =
1

4
(1 + x)(1− x2)(1 + 2x− 5x2),

q(x) =
1

2
x2(1 + x)(1− x2)(1− x+ x2),

and
v1(x) = x2(1− x2)2.

Since v1(x) > 0 for 0 < x < 1, the convexity of u will follow if we show that
u1(x) > 0 for 0 < x < 1. Since q(x) > 0 and E′(x) > 0 for 0 < x < 1, it follows
from (3.10) that u1(x) > 0 if and only if,

(3.11)
K′(x)

E′(x)
+
p(x)

q(x)
> 0

for 0 < x < 1. To prove (3.11), we apply the inequality

(3.12)
K′(x)

E′(x)
>

2

1 + x2

which is equivalent to the known inequality

K(x)− E(x) > E(x)− (1− x2)K(x),

see [AVV, Theorem 3.21(6)]. Thus, (3.11) follows from the inequality

2

1 + x2
+
p(x)

q(x)
=

2 + 2x− 2x3 − x4

x2(1 + x2)(1− x+ x2)
> 0,
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which obviously holds for all 0 < x < 1. Therefore u1(x) > 0 and u(x) is convex
on 0 < x < 1.

Using the well known limit values of K′(x) and E′(x), see [AVV, p. 49], we find

lim
x→+0

u(x) = +∞, u(1) = −2π,

which combined with the convexity property of u(x) implies the desired mono-
tonicity of f .

Solving the equation u(x) = 0 with Maple, we find x0 = .04771 . . . and f(x0) =
t0 = 4.08366 . . ..

According to Lemma 3, for 0 < t ≤ t0, equation (3.8) has two solutions. Let
x = x1(t) and x = x2(t), where 0 < x1(t) < x0 < x2(t) < 1 for t 6= t0. The
graphs of x1, x2, and f , as defined in Lemma 3, are shown in Figure 5.

1x (t)

0

0.01

0.02

0.03

0.04

1 2 3 4

2x (t)

0.2

0.4

0.6

0.8

0 1 2 3 4

f(x)

0

1

2

3

4

0.2 0.4 0.6 0.8 1

Figure 5. Graphs of x1, x2, and f .

The analysis made above leads to the following three possibilities for the extremal
configurations of Problem (2.1):

1. Extremal configuration is symmetric. In this case the minimal harmonic
measure is defined by (3.1).

2. Extremal configuration is degenerate. In this case the minimal harmonic
measure equals ud(r), where ud(r) is defined by (3.2).

3. In the third possible case the minimal harmonic measure is m(τ1, τ2) with
m(·, ·) defined by (3.5) and τ1 = x1(t), τ2 = x2(t) for some t, 0 < t < t0,
such that

(3.13)
1

µ(x1(t)
+

1

µ(x2(t)
=

2

µ(r2)
.

Let G(t) denote the left hand side of (3.13). The graphs of G(t) and 2/µ(r2) are
shown in Figure 6.

Now we prove our main result.
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Theorem 1. Let Ω(r) denote the minimal harmonic measure of Problem P(r).
Then Ω(r) = ud(r) for 0 < r ≤ r0 and Ω(r) = us(r) for r0 ≤ r < 1.

For r 6= r0, the extremal configuration is unique up to symmetry with respect to

the imaginary axis. It is degenerate for 0 < r < r0 and symmetric for r0 < r < 1.
For r = r0, the degenerate and symmetric configurations are the only extremal

configurations of Problem P(r).

Proof. Part 1: First we show that there is no nonsymmetric nondegenerate
minimal configuration with the corresponding value of t in the interval t̂ ≤ t ≤ t0,
where t̂ = 3.85609 . . . is a solution to the equation

(3.14) 1− 2

π

(

tan−1
√
x0 + tan−1

√

x2(t)
)

= ud(r)

with r = r(t) defined by

(3.15)
1

µ(x1(t)
+

1

µ(x0)
=

2

µ(r2)
.

Since µ′(s) < 0, see (3.7), the function 1/µ(s) is strictly increasing. Therefore r(t)
is an increasing function uniquely determined by (3.15). Now since the left hand
side of (3.14) strictly increases in t and the right hand side strictly decreases, t̂
is uniquely determined.

Assume that for some 0 < r′ < 1 there is a nonsymmetric nondegenerate minimal
configuration, which corresponds to t′, t̂ ≤ t′ < t0. Let x1(t

′) and x2(t
′) be the

corresponding solutions of (3.8). Since these solutions are monotone, we have

(3.16)
x1(t̂) ≤ x1(t

′) < x1(t0) < x2(t
′) ≤ x2(t̂),

x1(t̂) = .01836 . . . , x1(t0) = .04772 . . . , x2(t̂) = .10536 . . . .



2 (2002), No. 1 Minimal Harmonic Measure on Complementary Regions 241

Therefore, it follows from (3.13) and (3.16) that

r′ > r−, where r− = r(t̂) = .17610 . . .

The corresponding average harmonic measure is defined by (2.8):

Ω(r′) = 1− 2

π

(

tan−1
√

x1(t′) + tan−1
√

x2(t′)
)

.

This combined with (3.16) leads to the lower bound

Ω(r′) > 1− 2

π

(

tan−1
√
x0 + tan−1

√

x2(t̂)

)

= ud(r−) > ud(r
′)

contradicting the conjectured extremality of the corresponding configuration.

Part 2: Next we will show that the function G(t) strictly decreases from +∞
to G∗ = G(t∗) = .45204 . . ., when t runs from 0 to t∗, where t∗ = 4.07389 . . . is
defined by the equation

1

µ(x0)
+

1

µ(x2(t∗))
= G(t̂).

Since x1(t) and x2(t) are solutions to (3.8), implicit differentiation gives

G′(t) =
π

t

f1(x1) + f1(x2)

f1(x1)f1(x2)
,

where x1 = x1(t), x2 = x2(t) and

f1(x) = 2
√
x(1 + x)f ′(x) = K′(x)u(x),

where f and u are defined in Lemma 3. Note that f1 strictly decreases in 0 <
t < 1. Indeed,

f ′1(x) = −
2E

′2(x)f2(x)

x(1− x2)
,

where

f2(x) = x(1 + x2)

(

K′(x)

E′(x)

)2

+ (x− 1)2
K′(x)

E′(x)
− 2.

Since K′(x)/E′(x) > 2/(1 + x2), by (3.12), it follows that

f2(x) >
4x

1 + x2
+

2(1− x)2

1 + x2
− 2 = 0.

Therefore, f ′1(x) < 0 for 0 < x < 1. Hence, f1 is strictly decreasing on this
interval.

Finding the limit values of f1(x), we obtain

lim
x→+0

f1(x) = +∞, lim
x→1−0

f1(x) = −π2.

Lemma 3 implies that f1(x1)f1(x2) < 0 for all t, 0 < t < t0. Therefore, G
′(t) < 0

if and only if

(3.17) f1(x1(t)) + f1(x2(t)) > 0.
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To prove that (3.17) holds for 0 < t ≤ t∗, we consider iterations tn, where t1 = 0
and tn+1 is defined inductively by the following chain:

tn 7→ x2,n = x2(tn)

7→ f1,n = −f1(x2,n)
7→ x1,n = f−11 (f1,n)

7→ tn+1 = x−11 (x1,n).

The results of 12 iterations are shown in Table 1.

n 1 2 3 4 5 6

tn 0 3.64142 3.90656 3.98852 4.02433 4.04314

x2,n 1 0.14002 0.09653 0.08070 0.07258 0.06765

f1,n π2 5.46528 3.78714 2.89890 2.34856 1.97399

x1,n 0.01174 0.02079 0.02638 0.03009 0.03271 0.03466

tn+1 3.64142 3.90656 3.98852 4.02433 4.04314 4.05424

n 7 8 9 10 11 12

tn 4.05424 4.06133 4.06613 4.06954 4.07204 4.07393

x2,n 0.06435 0.06198 0.06020 0.05881 0.05770 0.05680

f1,n 1.70253 1.49674 1.33535 1.20539 1.09848 1.00900

x1,n 0.03616 0.03736 0.03833 0.03913 0.03981 0.04039

tn+1 4.06133 4.06613 4.06954 4.07204 4.07393 4.07539

Table 1. Iterations tn, x2,n, f1,n, x1,n.

We should emphasize that all explicitly shown digits of all entries in Table 1
are exact. The computed functions x1(t), x2(t), f1(x) and their inverses are real
analytic. The known computational methods allow us to compute their values
at a finite number of points (here 48) with the desired accuracy. Throughout the
paper, we keep 5 exact digits, but the computations were actually done up to 10
digits. All computations were made with Maple and then doublechecked with
Mathematica.

Note that
t12 = 4.07394 . . . > t∗ = 4.07389 . . . .

Let t′, 0 < t′ ≤ t∗ satisfy tn < t′ ≤ tn+1. Then, since the functions x1, x2, f1 are
monotone, we have:

x1,n−1 < x1(t
′) ≤ x1,n, x2,n+1 ≤ x2(t

′) < x2,n,

−f1,n < f1(x2(t
′)) ≤ −f1,n+1, f1,n ≤ f1(x1(t

′)) < f1,n−1
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for n = 1, ..., 16, where x1,0 = 0 and f1,0 = +∞. Hence, f1(x1(t
′))+f1(x2(t

′)) > 0.
Therefore, G′(t) < 0 and G(t) strictly decreases in 0 < t ≤ t∗.

Part 3: Now we show that for a fixed r, 0 < r < 1, and a defined by (2.7), the
limit point b = a provides a local minimum for Ω(a, b). We put b = a − δ with
δ > 0 small enough and then estimate the arctangents in (2.8). The well known
upper bound

µ(s) < log
4

s
see [AVV, p. 80] leads to the following estimate for τ1 = τ1(a, a− δ):

0 < τ1 < 4e−π/δ,

which shows that

0 ≤ tan−1
√

τ1(a, a− δ) < 2e−π/(2δ) = o(δn)

for any positive integer n as δ → +0.

Since the second arctangent in (2.8) is differentiable at b = a, we obtain

(3.18) Ω(a, a− δ) = Ω(a, a)− δµ2(τ2)

π2µ′(τ2)

1

τ
1/2
2 (1 + τ2)

+ o(δ)

as δ → +0. Since µ′(τ) < 0 for 0 < τ < 1, (3.18) shows that the degenerate
configuration provides a local minimum in the problem under consideration.

Part 4: Since G(t) and µ(r2) both are monotone, it follows that (3.13) defines
a decreasing function t = t(r) from r∗ ≤ r < 1 onto 0 < t ≤ t∗, where r∗ =
.21886 . . . is a solution of the equation

2

µ(r2)
=

1

µ(x1(t∗))
+

1

µ(x2(t∗))
.

Assume now that for some r′, 0 < r′ < 1 there is a nonsymmetric nondegenerate
extremal configuration. Let t′, 0 < t′ < t0 be a corresponding value of t. Since
we have shown in Part 1 that for t̂ ≤ t ≤ t0 there is no non-symmetric non-
degenerate configuration, it follows that 0 < t′ < t̂.

Note that

(3.19) G(t) ≤ G(t̂) for t̂ ≤ t ≤ t0.

Indeed, G(t) strictly decreases in t̂ < t ≤ t∗ and

G(t) ≤ 1

µ(x0)
+

1

µ(x2(t∗))
= G(t̂)

for t∗ ≤ t ≤ t0.

Since G(t′) = 2/µ(r′2) > G(t̂), (3.19) and the monotonicity property of G(t) for
0 < t ≤ t∗ imply that for fixed r = r′, equation (3.13) has a unique solution
t = t′. Therefore, for r = r′ there is only one critical point b = b′, 0 < b′ < a of
the constrained minimization problem (2.7), (2.8).
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Since we have shown in Part 3 that b = a provides a local minimum, it follows that
b = b′ provides a local maximum for the average harmonic measure considered
as a function of b. Hence the symmetric and degenerate configurations are the
only possible ones minimizing the average harmonic measure. Now the required
assertion follows from Lemma 2.

The idea used to show that G′(t) < 0 for 0 < t ≤ t∗ can be applied to prove
monotonicity of G for the whole range 0 < t < t0. For this we first estimate
f1(x1(t)) + f1(x2(t)) using asymptotic expansions of x1(t) and x2(t) in a vicinity
of t = t0, then apply iterations described above. However, this requires more
iterations and is not necessary for the proof of Theorem 1.

Some remarks concerning the symmetric case might be interesting. As we noticed
in the begining of this section, b = 0 is a critical point of the minimization prob-
lem under consideration. To decide whether it provides a minimum or maximum,
we apply the standard second derivative test. From (2.7), (2.8), we find

(3.20) π
∂2Ω

∂b2
=

2
∑

i=1

(

1

2

1 + 3τi

τ
3/2
i (1 + τi)2

(

∂τi
∂b

)2

− 1

τ
1/2
i (1 + τi)

∂2τi
∂b2

)

,

(3.21)

∂τi
∂b

=
(−1)i+1µ2(τi)

πµ′(τi)
,

∂2τi
∂b2

= −µ
′′(τi)µ(τi)− 2µ′2(τi)

µ′(τi)µ(τi)

(

∂τi
∂b

)2

.

Let τ = τ1(a, 0) = τ2(a, 0) = r2. Then (3.20), (3.21) lead to

(3.22)
π
∂2Ω

∂b2

∣

∣

∣

∣

∣

b=0

=
µ3(τ)

π2τ 3/2(1 + τ)2µ′3(τ)

× [(1+3τ)µ′(τ)µ(τ)+2τ(1+τ)(µ′′(τ)µ(τ)−2µ′2(τ))]

Using the differentiation formulas for µ(τ), see [AVV, p. 82], and Legendre’s
relation

E(τ)K′(τ) + E′(τ)K(τ)−K(τ)K′(τ) =
π

2
,

we obtain from (3.22),

π
∂2Ω

∂b2

∣

∣

∣

∣

∣

b=0

=
1

π2
τ 1/2(1− τ)K′3(τ)u(τ)
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with u(x) defined by (3.9). Since u(x) has only one zero x = x0 in 0 < x < 1,
see Lemma 3, it follows that

∂2Ω

∂b2

∣

∣

∣

∣

∣

b=0

< 0 if 0 < r =
√
τ < r0,

∂2Ω

∂b2

∣

∣

∣

∣

∣

b=0

> 0 if r0 < r =
√
τ < 1,

which shows that for 0 < r < r0 the symmetric configuration provides a local
maximum and for r0 < r < 1 it provides a local minimum. Figure 7 demonstrates
typical behavior of the average harmonic measure Ω(a, b) as a function of b for
some values of a or, equivalently, for some values of the main parameter r.

r=0.2
0.7

0.72

0.74

0 0.2 0.4

r=0.30.62

0.63

0.64

0 0.2 0.4 0.6

r=0.5

0.45

0.5

0.55

0 0.5 1

Figure 7. Typical behavior of Ω(a, b).

4. Some remarks and questions

Lemma 1, which actually describes the range of all possible pairs of the harmonic
measures ω(r, E,D1), ω(−r, E,D2), can be used to extremize some other char-
acteristics, besides the average harmonic measure, of the studied configurations.
In particular, a solution to the problem

(4.1) min
E

max{ω(r, E,D1), ω(−r, E,D2)}

is an immediate consequence of Lemma 1 and the easy observation that the
equality ω(r, E,D1) = ω(−r, E,D2) must hold for any extremal configuration.
This implies that the symmetric configuration is the unique minimizer of (4.1).

It is interesting to note that the n-dimensional counterparts of Problems (2.1)
and (4.1) are much harder. They are open even in the case n = 3, where both
questions sound very natural. The difficulty here is the lack of an analogous
theory to Jenkins’ theory of the extremal decompositions into nonoverlapping
regions, see [J1, S2].
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A symmetrization result of A. Baernstein [B, BT] that is still applicable, shows
that extremal regions D1, D2 are bounded by surfaces of revolution about the
axis containing both reference points a1 = r and a2 = −r. Of course, for
the extremal regions D1, D2 of the n-dimensional version of problem (4.1) the
equality ω(a1, E,D1) = ω(a2, E,D2) is satisfied in all dimensions.

Another interesting open question concerns a similar control for the average or
maximal harmonic measure at n ≥ 3 points ak = re2πi(k−1)/n, k = 1, . . . , n,
equally distributed on the circle {z : |z| = r}, 0 < r < 1, in the unit disk ∆.
More precisely, the following problem would be of some interest.

Let a continuum E split ∆ into n simply connected (or more general) regions
Dk 3 ak, k = 1, . . . , n. Find

inf
E

1

n

∑

ω(ak, E,Dk) and inf
E

max
k=1,...,n

ω(ak, E,Dk)

and describe possible extremal configurations.

The conjectured extremal configuration of the minmax problem consists of n
circular sectors

Sk =

{

z : |z| < 1,

∣

∣

∣

∣

arg z − 2π
k − 1

n

∣

∣

∣

∣

<
π

n

}

, k = 1, . . . , n.

Under an additional assumption that the closure of ∂Dk ∩ U is connected for
all k = 1, . . . , n, this can be proved applying Jenkins’s theory on the extremal
decomposition [J1, S2]. This result will be published elsewhere.
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