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A Note on the Hypergeometric Mean Value

Roger W. Barnard and Kendall C. Richards

Abstract. Recent efforts to obtain bounds for the complete elliptic integral
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in terms of power means and other related means have precipitated the search
for similar bounds for the more general 2F1(α, β; γ; r). In an early paper, B.
C. Carlson considered the approximation of the hypergeometric mean values

( 2F1(−a, b; b + c; r))1/a in terms of means of order t, given by Mt(s, r) :=
{(1 − s) + s(1 − r)t}1/t. In this note, a refinement of one such approximation
is established by first proving a general positivity result involving 3F2.
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In the last few decades, there has been an intense renewed interest in the classi-
cal special functions, in particular the Gaussian hypergeometric function. This
is evidenced by the almost 1000 papers listed just in the last three years in the
Mathematical Reviews under the topic “hypergeometric functions.” For an ex-
tensive bibliography and history see [1, 3, 4]. Hypergeometric functions, which
have many of the classical special functions as special cases, have been found
useful in resolving several current problems as noted in [5, 7, 8, 10, 11]. Given
real numbers α, β, and γ with γ 6= 0,−1,−2, . . ., the Gaussian hypergeometric

function is defined by

2F1(α, β; γ; r) :=
∞
∑

n=0

(α)n(β)n
(γ)n

rn

n!
, |r| < 1.

Here (α)0 = 1 for α 6= 0, and (α)n := α(α+ 1) · · · (α+ n− 1) for n = 1, 2, 3, . . ..
In [7], [8], R. Barnard, K. Pearce, and K. Richards proved very recently that the
following inequalities are true for all r ∈ [0, 1]:
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where r′ =
√
1− r2. If, for x, y, t > 0, we use the notation

At(x, y) = ((x
t + yt)/2)1/t

for the power mean, we can write the lower and upper bounds as the power
means A3/2(1, r

′) and A2(1, r
′), respectively.

One might seek a natural generalization of this inequality by replacing the pa-
rameter values (−1/2, 1/2, 1) by a more general triple. B. C. Carlson [12] con-
sidered the approximation of the hypergeometric mean values in terms of means
of order t. For r, s, t > 0, the mean of order t is given by

Mt(s, r) := {(1− s) + s(1− r)t}1/t

and the hypergeometric mean of order a is given by

M(a, b, c, r) := { 2F1(−a, b; b+ c; r)}1/a

for r ∈ [0, 1], a, b, c > 0. Recall the following representation due to Euler (see
[4], p. 65):

(2) 2F1(−a, b; b+ c; r) =
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1(1− u)c−1(1− ur)a du,

for b, c > 0, from which it follows that 2F1(−a, b; b + c; r) > 0 for all r ∈ (0, 1).
The fact that 2F1(−a, b; b+ c; 1) is finite for b, c > 0 follows from

2F1(−a, b; b+ c; 1) =
Γ(a+ c)Γ(b+ c)

Γ(a+ b+ c)Γ(c)

which is due to Gauss (see [4]). It is also helpful to note that for fixed r, s ∈ (0, 1)
the function t 7→ Mt(s, r) is monotone (e.g., see [9], p. 17). The main result of
this note is Theorem 1, which refines the following theorem of B. C. Carlson [12].

Theorem A (Carlson, 1965). If a ∈ (0, 1) and b, c > 0, then

(3) Ma

(

b

b+ c
, r

)

< M(a, b, c, r) for all r ∈ (0, 1).

Theorem B (Carlson, 1965). If a > 1 and b, c > 0, then

(4) Ma

(

b

b+ c
, r

)

> M(a, b, c, r) for all r ∈ (0, 1).

Sketch of Proof of Theorem A. Restricting our attention to the Gaussian
hypergeometric function, Carlson’s proof in [12] takes the following form: Note
that [Ma (u, r)]

a < [M1 (u, r)]
a, since Mt is an increasing function of t and recall

the integral representation for 2F1 given in (2). Finally, for p and q positive inte-
gers it follows from (α)β = Γ(α+β)/Γ(α) and properties of the Beta function B
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(e.g., see [4]) that

Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1+p(1− u)c−1+q du =
Γ(b+ c)

Γ(b)Γ(c)
B(b+ p, c+ q)

=
Γ(b+ c)

Γ(b)Γ(c)

Γ(b+ p)Γ(c+ q)

Γ(b+ c+ p+ q)

=
(b)p(c)q
(b+ c)p+q

.

Therefore

[M(a, b, c, r) ]a = 2F1(−a, b; b+ c; r)

=
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1(1− u)c−1[(1− u) + u(1− r)]a du

=
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1(1− u)c−1[M1 (u, r)]
a du

>
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1(1− u)c−1[Ma (u, r)]
a du

=
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1(1− u)c−1[(1− u) + u(1− r)a] du

=
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1(1− u)c−1+1 du

+(1− r)a · Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

ub−1+1(1− u)c−1 du

=
c+ b(1− r)a

b+ c
=

[

Ma

(

b

b+ c
, r

)]a

.

In [12], Carlson uses an argument similar to that discussed above to prove The-
orem B and that (3) holds for −∞ < a < 0 as well as a = 0 as a limiting
case.

Since Mt is an increasing function of t, a natural question to ask is the following:

Question. Given a ∈ (0, 1) and b, c > 0, are there values of t > a such that

Ma

(

b

b+ c
, r

)

< Mt

(

b

b+ c
, r

)

< M(a, b, c, r) for all r ∈ (0, 1)?

Applying Lemma 1, which is a general positivity result involving 3F2 and is of
independent interest (see [6, 7, 8]), we have obtained the following
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Theorem 1. Suppose a ∈ (0, 1) and b, c > 0. If −∞ < t < (a+ab+c)/(1+b+c),
then

(5) Mt

(

b

b+ c
, r

)

< M(a, b, c, r) for all r ∈ (0, 1).

Remark. First note that (a+ ab+ c)/(1 + b+ c) > a. Also, since

M(a, b, c, r)−Mt

(

b

b+ c
, r

)

=
bc

2

[

a+ b+ c− t(1 + b+ c)

(b+ c)2(c+ b+ 1)

]

r2 +O(r3)

it follows that t < (a+ b+ c)/(1 + b+ c) is a necessary condition for (5).

In order to prove Theorem 1, we will need the following

Lemma 1. Suppose α, β, γ > 0 and 1 > λ > max{αβ/γ, α + β − γ}. Then

(−λ)n · 3F2(−n, α, β; γ, 1 + λ− n; 1) < 0 for all n ∈ N,

where 3F2 is the generalized hypergeometric function given by

3F2(α1, α2, α3; β1, β2; r) :=
∞
∑

n=0

(α1)n(α2)n(α3)n
(β1)n(β2)n

rn

n!
.

Proof of Lemma 1. Let r ∈ (0, 1) and define h(r) := (1 − r)λ 2F1(α, β; γ; r).
Thus

h(r) =
∞
∑

n=0

(−λ)n
n!

rn
∞
∑

n=0

(α)n(β)n
(γ)n

rn

n!

=
∞
∑

n=0

n
∑

k=0

{

(−λ)n−k
(1)n−k

(α)k(β)k
k!(γ)k

}

rn

=
∞
∑

n=0

(−λ)n
n!

n
∑

k=0

{

(−1)k(−n)k
(−1)k(1 + λ− n)k

(α)k(β)k
k!(γ)k

}

rn

using (α)n−k = (−1)k(α)n/(1− α− n)k. Thus

h(r) =
∞
∑

n=0

(−λ)n
n!

3F2(−n, α, β; γ, 1 + λ− n; 1)rn.
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It follows that

h′(r) = −λ(1− r)λ−1
2F1(α, β; γ; r) +

ab

c
(1− r)λ 2F1(α + 1, β + 1; γ + 1; r)

= −(1− r)λ−1 ·
∞
∑

n=0

{

(α)n(β)n
(γ)n

rn

n!

(

λ− (1− r)
(α+ n)(β + n)

(γ + n)

)}

= −(1− r)λ−1 ·
∞
∑

n=0

{

(α)n(β)n
(γ)n

rn

n!

(

λ− (α+ n)(β + n)

(γ + n)

)

+
(α)n+1(β)n+1

(γ)n+1

rn+1

n!

}

= −(1− r)λ−1 ·
[

∞
∑

n=0

{

(α)n(β)n
(γ)n

rn

n!

(

λ− (α+ n)(β + n)

(γ + n)

)}

+
∞
∑

n=0

n(α)n(β)n
(γ)n

rn

n!

]

= −(1− r)λ−1 ·
∞
∑

n=0

{

(α)n(β)n
(γ)n

rn

n!

(

λ+ n− (α + n)(β + n)

(γ + n)

)}

.

The result now follows for 1 > λ > max{αβ/γ, α+β−γ} by noting that (1−r)λ−1

and

∞
∑

n=0

{

(α)n(β)n
(γ)n

rn

n!

(

λ+ n− (α + n)(β + n)

(γ + n)

)}

both have positive Maclaurin series coefficients.

Proof of Theorem 1. After (5) is proved for 0 < t < (a+ ab+ c)/(1 + b+ c),
the fact that (5) holds for t < 0 (and t = 0 as a limiting case, see [9, 12]) follows
directly from the monotonicity of Mt. Let a ∈ (0, 1); b, c > 0; s = b/(b+ c); and
0 < t < (a+ ab+ c)/(1 + b+ c). Define

f(r) := 2F1(−a, b; b+ c; r) =
∞
∑

n=0

Anr
n,

g(r) :=

{

Mt

(

b

b+ c
, r

)}a

=
∞
∑

n=0

Bnr
n.
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It follows that B0 = A0 = 1 and B1 = A1 = −as. Now suppose that Bk ≤ Ak

for all k = 1, ..., n. The logarithmic derivative of g becomes

g′(r)

g(r)
=

−as
(1− s)(1− r)1−t + s(1− r)

and thus

(6)

{

∞
∑

n=0

(n+ 1)Bn+1r
n

}

{

(1− s)(1− r)1−t + s(1− r)
}

= −as
∞
∑

n=0

Bnr
n.

Using (1− r)1−t =
∑∞

n=0
(t− 1)nrn/n! and the Cauchy product, we find that

(n+ 1)Bn+1 = Bn[s(n− a)− n(1− s)(t− 1)]

−(1− s)
n−2
∑

k=0

(k + 1)Bk+1

(t− 1)n−k
(1)n−k

≤ An[s(n− a)− n(1− s)(t− 1)]

−(1− s)
n−2
∑

k=0

(k + 1)Ak+1

(t− 1)n−k
(1)n−k

= Ans(n− a) + (1− s)(n+ 1)An+1

−(1− s)
n
∑

k=0

(k + 1)Ak+1

(t− 1)n−k
(1)n−k

= (n+ 1)An+1 + Ans(n− a)− s(n+ 1)An+1 +
as(1− s)

n!
·

·(t− 1)n 3F2(−n, 1− a, b+ 1; b+ c+ 1, 2− t− n; 1)

= (n+ 1)An+1 +
as(1− s)

n!
·

·
{

(t− 1)n 3F2(−n, 1− a, b+ 1; b+ c+ 1, 2− t− n; 1)

−(1− a)n(b)n
(b+ c+ 1)n

}

≤ (n+ 1)An+1

using Lemma 1 with λ = 1 − t, α = 1 − a, β = b + 1, and γ = b + c + 1, since
0 < t < (a + ab + c)/(1 + b + c) implies 1 > λ > (1 − a)(b + 1)/(b + c + 1) =
αβ/γ > α + β − γ.

It should be noted that if t = (a+ b+ c)/(1 + b+ c), then (5) does not hold for
b > c. In the case that b = c we make the following
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Conjecture. Suppose a ∈ (0, 1), b > 0, and a+b > 1/2. If t < (a+2b)/(1+2b),
then

(7) Mt

(

1

2
, r

)

< M(a, b, b, r)

holds for all r ∈ (0, 1). The bound (a+ 2b)/(1 + 2b) is sharp.

Additional motivation for this work and a proof of this conjecture in the case
that a = b = 1/2 can be found in [7, pp. 693–694]. In particular, we have shown

Theorem 2 (Barnard, Pearce, Richards, 2000). If t < 3/4, then

(8) Mt

(

1

2
, r

)

< M

(

1

2
,
1

2
,
1

2
, r

)

for all r ∈ (0, 1).

The bound 3/4 is sharp.

In view of Theorem B and the fact that Mt is an increasing function of t, the
following problem remains for future investigation:

Problem. Given a, b, c > 0, identify conditions on a, b, c, and the sharp value
φ(a, b, c) such that if t > φ(a, b, c), then

Mt

(

b

b+ c
, r

)

> M(a, b, c, r) for all r ∈ (0, 1).

It should also be noted that in the special case that a = b = c = 1/2, H. Alzer [2]
has conjectured that if φ0 = ln(2)/(2 ln (π/2)) ≈ 0.767 and t > φ0, then

(9) Mt

(

1

2
, r

)

> M

(

1

2
,
1

2
,
1

2
, r

)

for all r ∈ (0, 1).

The bound φ0 is sharp. (Note that (1) implies that (9) holds for all t ≥ 2.)
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