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Abstract. Let {φk}n
k=0, n < m, be a family of polynomials orthogonal with respect to the

positive semi-definite bilinear form

(g, h)d :=
1

m

mX

j=1

g(xj)h(xj), xj := −1 + (2j − 1)/m.

These polynomials are known as Gram polynomials. The present paper investigates the growth
of |φk(x)| as a function of k and m for fixed x ∈ [−1, 1]. We show that when n ≤ 2.5m1/2, the
polynomials in the family {φk}n

k=0 are of modest size on [−1, 1], and they are therefore well suited
for the approximation of functions on this interval. We also demonstrate that if the degree k is close
to m, and m ≥ 10, then φk(x) oscillates with large amplitude for values of x near the endpoints of
[−1, 1], and this behavior makes φk poorly suited for the approximation of functions on [−1, 1]. We
study the growth properties of |φk(x)| by deriving a second order differential equation, one solution
of which exposes the growth. The connection between Gram polynomials and this solution to the
differential equation suggested what became a long-standing conjectured inequality for the confluent
hypergeometric function 1F1, also known as Kummer’s function, i.e., that 1F1((1 − a)/2, 1, t2) ≤
1F1(1/2, 1, t2) for all a ≥ 0. In this paper we completely resolve this conjecture by verifying a
generalization of the conjectured inequality with sharp constants.

Key words. Confluent hypergeometric function, polynomial approximation

1. Introduction. Let f be a smooth function defined on the closed interval
[−1, 1] and assume that f is explicitly known only at the m equidistant points

xk := −1 + (2k − 1)/m, 1 ≤ k ≤ m.(1)

We wish to approximate f on [−1, 1] by a polynomial of degree n, where n < m.
Introduce the positive semi-definite bilinear form

(g, h)d :=
1
m

m∑
k=1

g(xk)h(xk)(2)

for functions f, g continuous on [−1, 1], and define the associated discrete semi-norm

‖g‖d := (g, g)
1
2
d .(3)

Let {φk}m−1
k=0 be the family of polynomials that are orthogonal with respect to the

bilinear form (2), have positive leading coefficient and are normalized so that ‖φk‖d =
1. The φk are known as Gram polynomials. These polynomials are discussed, e.g., by
Dahlquist and Björck [7, Section 4.4.4], Hildebrand [12, Sections 7.13 and 7.16] and
Szegö [20, Section 2.8].

Let Πn denote the set of all polynomials of degree at most n. The polynomial
Φn ∈ Πn, that solves the discrete least-squares approximation problem

‖f − Φn‖d = min
Φ∈Πn

‖f − Φ‖d,(4)
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is given by

Φn(x) :=
n∑

k=0

βkφk(x), βk := (φk, f)d(5)

and is therefore simple to compute. It is the purpose of the present paper to investigate
the conditions on n under which the solution Φn of (4) also approximates f well with
respect to the uniform norm

‖g‖∞ := sup
x∈[−1,1]

|g(x)|.

In order to gain some insight into the behavior of ‖f − Φn‖∞, we first review two
special cases: n � m and n = m− 1. We begin with the former. Let {pk}n

k=0 denote
the Legendre polynomials normalized so that ‖pk‖ = 1, where we define

< g, h > :=
1
2

∫ 1

−1

g(x)h(x)dx,(6)

‖g‖ := < g, g >1/2(7)

for all square integrable functions on [−1, 1]. Analogously to (5), the solution Pn ∈ Πn

of the (continuous) least-squares problem

‖f − Pn‖ = min
P∈Πn

‖f − P‖

can be written as

Pn(x) =
n∑

k=0

< pk, f > pk(x).

In [6, p. 345] Brass proved the following result.
Theorem 1.1. Let dσ be a distribution on [−1, 1], and let {qk}n+1

k=0 be a family of
orthogonal polynomials with respect to dσ. Assume the normalization

∫ 1

−1
q2
k(x)dσ(x) =

1. Let dσ be such that

(i)
∫ 1

−1
f(x)dσ(x) =

∫ 1

−1
f(−x)dσ(x) for any f ∈ C[−1, 1],

(ii) ‖qk‖∞ = qk(1), k = 0, 1, . . . , n + 1.

Assume that f ∈ Cn+1[−1, 1], and let ηk :=
∫ 1

−1 f(x)qk(x)dσ(x). Then

‖f −
n∑

k=0

ηkqk‖∞ ≤ ‖qn+1‖∞
‖q(n+1)

n+1 ‖∞
‖f (n+1)‖∞.

Sharpness follows by letting f = qn+1.
We apply this result and use the known properties of the Legendre polynomials,

including the fact that ‖pk‖∞ = pk(1), to obtain,

‖f − Pn‖∞ ≤ ‖f (n+1)‖∞
(n + 1)!

‖pn+1‖∞ lim
x→∞(xn+1/pn+1(x)).(8)
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This inequality is used in the proof of the following bound.
Proposition 1.2. Assume that m > n, and let Φn be given by (5). Then, for

f ∈ Cn+1[−1, 1],

‖f − Φn‖∞ ≤ ‖f (n+1)‖∞
2n(n + 1)!

· π
1
2

2
n

1
2 (1 + O(n−1)) + ĉnO(m−2),(9)

where the O(n−1)-term is independent of m and the O(m−2)-term is independent of
n. The constant ĉn is independent of f and m.

Proof. The bilinear form (2) corresponds to a discretization by the rectangle rule
of (6), which has a discretization error O(m−2). Therefore, there are constants ck,
such that for each k,

φk(x) = pk(x) + ckO(m−2), m → ∞,(10)

uniformly for x ∈ [−1, 1]; see Wilson [21] for details. It follows from (10) that there
are constants ĉn, such that for each n,

‖f − Φn‖∞ ≤ ‖f − Pn‖∞ + ‖Pn − Φn‖∞ = ‖f − Pn‖∞ + ĉnO(m−2), m → ∞.(11)

Substitute (8) into (11) and use the following equalities that follow from results in
[20, Section 4.7],

‖pn+1‖∞ = (2n + 3)
1
2 ,(12)

lim
x→∞(xn+1/pn+1(x)) = 2n

(
2n + 1

n

)−1

(2n + 3)−
1
2 ,(13)

and apply Stirling’s formula to bound the binomial coefficient in (13). This shows the
proposition.

Let Qn ∈ Πn solve the uniform-norm approximation problem

‖f − Qn‖∞ = min
Q∈Πn

‖f − Q‖∞.

Then, for f ∈ Cn+1[−1, 1],

‖f − Qn‖∞ ≤ ‖f (n+1)‖∞
2n(n + 1)!

,(14)

see Meinardus [15, Theorem 60]. The bound (14) is sharp. The closeness of the
bounds (9) and (14) for large m, suggests that for m sufficiently large the polynomial
Φn, given by (5), is a good approximation of f also when the error is measured in the
uniform norm.

We turn to the case when n = m−1. Then Φn interpolates f at the nodes (1). A
well-known difficulty arises: even for a function f analytic on [−1, 1], the approximant
Φn may oscillate with large amplitude near the endpoints of [−1, 1], and the amplitude
may increase with n. An analysis of this behavior, known as the Runge phenomenon,
is presented by Runge [19], and more recently by Rivlin [18] and Li and Saff [14]. The
difficulty is caused by the exponential growth with n of the norm of the interpolation
operator; see [18, p. 99].

A bound analogous to (8) for Gram polynomials is shown to be valid in Section 2.
This suggests that Φn, given by (5), approximates analytic functions f well on [−1, 1]
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if the degree n is small enough in relation to m, so that ‖φn+1‖∞ stays bounded as n
and m increase. We therefore need to study the growth of φn(x) as a function of m, n
and x. In Section 3 we derive a family of second order ordinary differential equations
from the three-term recurrence relation for the φn. For each fixed value of x ∈ [−1, 1],
we obtain a differential equation that describes the behavior of φn(x) for large values
of m and n. The differential equation as well as the initial conditions on the solution
depend on the parameter x ∈ [−1, 1]. The solution of each initial value problem can
be expressed in terms of the confluent hypergeometric function

F (a, c, z) := 1F1(a; c; z) :=
∞∑

n=0

(a)n

(c)nn!
zn,(15)

where (a)n := Γ(a+n)/Γ(a) is the Pochhammer symbol and Γ denotes the Γ-function.
Different values of x correspond to different values of the parameter a. The function
(15) is also known as Kummer’s function.

Section 4 shows that the solution of the initial value problem corresponding to
x = 1 dominates the solutions corresponding to −1 ≤ x < 1. Therefore, it suffices
to consider only the former solution when studying the growth of ‖φn‖∞ as m and
n increase. The fact that the solution corresponding to x = 1 dominates solutions
associated with the other values of x is equivalent to the inequality

F

(
1 − ζ

2
, 1, z

)
≤ F (1/2, 1, z) for all ζ ≥ 0 and z ≥ 0.(16)

The proof of (16) given in Section 4 is believed to be new.
Our study of solutions to the differential equation shows that for large values of m

and n, the norm ‖φn‖∞ is nearly invariant under changes in n and m, whenever the
ratio n/m

1
2 is kept constant. Moreover, Φn defined by (5) is a good approximant of f

in the uniform norm, provided that n is not larger than a small multiple of m
1
2 , say

n ≤ 2.5m
1
2 . Numerical examples that illustrate the behavior of the Gram polynomials

are presented in Section 5.
The relevance of the ratio n/m

1
2 has previously been noted by Björk [5] and

Zaremba [22] in their investigation of Gram polynomials. Closely related problems
are also considered in [9, 10, 13, 16, 18]. Our method of investigation also can be used
to analyze classes of orthogonal polynomials other than Gram polynomials.

2. Gram Polynomials. The Gram polynomials introduced in Section 1 satisfy
the three-term recurrence relation, for 1 ≤ n < m,

φn(x) = 2αn−1xφn−1(x) − αn−1

αn−2
φn−2(x),(17)

αn−1 :=
m

n

(
n2 − 1

4

m2 − n2

) 1
2

,(18)

with φ0(x) := 1, φ−1(x) := 0 and α−1 := 1; see, e.g., [7, (4.4.24)-(4.4.26)].
Theorem 2.1. Each Gram polynomial φn, 0 ≤ n < m, can be written as a non-

negative linear combination of Legendre polynomials pj, 0 ≤ j ≤ n. In particular,

‖φn‖∞ = φn(1), 0 ≤ n < m.(19)
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Proof. The theorem can be shown directly by induction. It follows also from a
more general result by Askey [2, Theorem 1]. Here we verify that the conditions of
Theorem 1 in [2] are satisfied. Let {φ∗

n}m−1
n=0 be monic Gram polynomials associated

with the bilinear form (2), and let {p∗n}∞n=0 be monic Legendre polynomials. Then

φ∗
n+1(x) = xφ∗

n(x) − λnφ∗
n−1(x), 0 ≤ n ≤ m − 2,

p∗n+1(x) = xp∗n(x) − δnp∗n−1(x), n = 0, 1, . . . ,

where

λn :=
n2

4n2 − 1
(1 − n2

m2
),

δn :=
n2

4n2 − 1

and φ∗
0(x) := p∗0(x) := 1, φ∗

−1(x) := p∗−1(x) := 0. We have to show that δk ≥ λn > 0
for 1 ≤ k ≤ n and 0 ≤ n ≤ m − 2. But δk decreases as k ≥ 1 increases, and
δn ≥ λn > 0. Thus, the conditions of [2, Theorem 1] are satisfied, and, therefore,

φ∗
n(x) =

n∑
j=0

anjp
∗
j (x)(20)

with anj ≥ 0 for all 0 ≤ j ≤ n and 0 ≤ n < m. The inequality (19) now follows from
the representation (20) and the fact that ‖p∗j‖∞ = p∗j (1).

It follows from (19) and Theorem 1.1 that the error bound

‖f − Φn‖∞ ≤ ‖f (n+1)‖∞
(n + 1)!

‖φn+1‖∞ lim
x→∞(xn+1/φn+1(x)),(21)

which is analogous to (8), is valid. Substitution of f := φn+1 into (21) shows the
sharpness of the bound.

3. A Differential Equation Model. A differential equation is derived that
approximates the three-term recurrence relation for φn(x). The solution of the dif-
ferential equation is a function of (n − 1

2 )/m
1
2 . In order to derive the differential

equation, we first introduce τ := n/m
1
2 . Then (18) can be written as

αn−1 = (1 − 1
4
τ−2m−1)

1
2 (1 − τ2m−1)−

1
2 .(22)

Let τ0 and τ1 be constants, such that 0 < τ0 < τ1 < ∞, and consider n as a function
of τ . We obtain from (22) that

αn−1 = 1 +
1
2
(τ2 − 1

4
τ−2)m−1 + O(m−2), m → ∞,(23)

where the convergence in (23) is uniform for τ0 ≤ τ ≤ τ1. Note that the bound
n ≥ τ0m

1/2 implies that n → ∞ as m → ∞. From (22), we also obtain

αn−1

αn−2
= 1 + (τ +

1
4
τ−3)m− 3

2 + O(m−2), m → ∞,(24)
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uniformly for τ0 ≤ τ ≤ τ1. Let x := 1 − ζ/m. Then (17) can be written in the form

φn(x) − 2φn−1(x) + φn−2(x)
m−1

− 2m(αn−1 − 1)φn−1(x) − m(1 − αn−1

αn−2
)φn−2(x)(25)

+ 2ζαn−1φn−1(x) = 0.

Substituting (23) and (24) into (25) yields

φn(x) − 2φn−1(x) + φn−2(x)
m−1

= (τ2 − 1
4
τ−2 − 2ζ)φn−1(x) − (τ +

1
4
τ−3)m− 1

2 φn−2(x)(26)

+ φn−1(x)O(m−1) + φn−2(x)O(m−1), m → ∞,

where the convergence is uniform for τ0 ≤ τ ≤ τ1. Introduce t := τ − 1
2∆τ , ∆τ :=

∆t := m− 1
2 and substitute

φ(t) := φn−1(x)/
√

2m
1
2(27)

into (26). The change of variables from τ to t makes the O(m− 1
2 )-term vanish. We

obtain

φ(t + ∆t) − 2φ(t) + φ(t − ∆t)
(∆t)2

= (t2 − 1
4
t−2 − 2ζ)φ(t) + O(∆t2), ∆t → 0,

and, hence,

d2

dt2
φ(t) = (t2 − 1

4
t−2 − 2ζ)φ(t) + O(∆t2), ∆t → 0,(28)

The convergence in (28) is uniform for t0 ≤ t ≤ t1, where t0, t1 are arbitrary but fixed
constants, such that 0 < t0 < t1 < ∞. From (28) we obtain the differential equation

d2

dt2
φ(t) = (t2 − 1

4
t−2 − 2ζ)φ(t).(29)

The general solution of (29) is given by

φ(t) = t
1
2 e−t2/2(A 1F1(

1
2
(1 − ζ), 1, t2) + B U(

1
2
(1 − ζ), 1, t2)),(30)

where A, B are arbitrary constants, F = 1F1 is Kummer’s function (15), and U is a
linearly independent logarithmic solution to Kummer’s equation; see [1, p. 504] for
the definition of U . The differential equation model (28), the solution (30) with A = 1
and B = 0, and equation (37) below were first suggested in [8].

We are interested in studying ‖φn‖∞ = φn(1), and therefore choose ζ = 0 in (29)
and (30). This value of ζ corresponds to x = 1. Other choices of ζ are discussed
below. For ζ = 0, the solution (30) simplifies to, see [1, (13.6)],

φ(t) = t
1
2 (AI0(t2/2) + Bπ− 1

2 K0(t2/2)),

where I0 and K0 are modified Bessel functions of zeroth order of the first and second
kind, respectively. We note that, see [1, Chapter 9],
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t
1
2 I0(t2/2) = π− 1

2 t−
1
2 et2/2(1 + O(t−2)), t → ∞,

t
1
2 K0(t2/2) = π

1
2 t−

1
2 e−t2/2(1 + O(t−2)), t → ∞,

which shows that t
1
2 I0(t2/2) is a dominating solution of (29) as t increases. Moreover,

t
1
2 I0(t2/2) = t

1
2 (1 + O(t4)), t → 0,

t
1
2 K0(t2/2) = t

1
2 ((−2 ln(t/2) + γ)I0(t) + O(t4)), t → 0,

(31)

where γ ≈ 0.577 denotes Euler’s constant.
We turn to the initial conditions. Since ‖pn−1‖ = pn−1(1), we obtain from (10)

and (12), that for fixed n,

φn−1(1) = (2n + 1)
1
2 + cn−1O(m−2) =

√
2m

1
2 t

1
2 + cn−1O(m−2), m → ∞.(32)

Substituting (32) into (27) yields

φ(t) = t
1
2 (1 + O(t4)), t → 0,

and in view of (31), we obtain

φ(t) − t
1
2 I0(t2/2) = t

1
2 O(t4), t → 0,(33)

where the power of t in the O(t4)-factor cannot be increased. Thus, the function

φ(0)(t) := t
1
2 I0(t2/2)(34)

can be used to approximate φn(1)/
√

2m
1
2 in the following way. Let φ(t) be defined

by (27) with x = 1, and select t0 > 0 sufficiently small so that the right-hand side of
(33) is small for 0 ≤ t ≤ t0. Analogously to (27), define

φ̂n−1(x) :=
√

2m
1
2 φ(0)(t), t := (n − 1

2
)/m

1
2 , t0 ≤ t ≤ t1,

and choose m large enough so that φ̂n−1(1) is a good approximate solution of the
difference equation (25) for t0 ≤ t ≤ t1. Since φ(0) is a dominating solution of (29),
it models the behavior of the scaled polynomials φn(x)/

√
2m

1
2 at x = 1 fairly well

already for modest values of m. This is illustrated by numerical examples in Section
5.

We next determine initial conditions for ζ > 0. For bounded ζ > 0 and fixed n,
we obtain, by (10), that

φn−1(1 − ζ/m) = pn−1(1 − ζ/m) + cn−1O(m−2)
= pn−1(1) + c̃n−1O(m−1), m → ∞,

where the constant c̃n−1 is independent of m. For φ(t) defined by (27), with x =
1 − ζ/m, we have φ(t) = t

1
2 (1 + O(t2)), t → 0. Analogously to (33), we find that

φ(t) − t
1
2 e−t2/2F (

1
2
(1 − ζ), 1, t2) = t

1
2 O(t2), t → 0.
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The solution of (29) that models the behavior of φn−1(1 − ζ/m)/
√

2m
1
2 for ζ > 0 is

therefore

φ(ζ)(t) := t
1
2 e−t2/2F (

1
2
(1 − ζ), 1, t2).(35)

Note that φ(ζ)(t) → φ(0)(t) as ζ → 0. The fact that ‖φn‖∞ = φn(1) suggests the
inequality

φ(ζ)(t) ≤ φ(0)(t) for all ζ ≥ 0, t ≥ 0,(36)

which is equivalent with (16). We will show (36) in Section 4.
Let ζ := 2k+1 for some integer 0 ≤ k < m. Then x := 1− ζ/m is the node xm−k

defined by (1), and we obtain from (35) that the solution

φ(ζ)(t) = t
1
2 e−t2/2F (−k, 1, t2) = t

1
2 e−t2/2Lk(t2)(37)

of (29) models the behavior of φn−1(1−ζ/m)/
√

2m
1
2 . Here Lk(x) denotes a Laguerre

polynomial of degree k; see [1, (22.5.54)]. The fact that φ(ζ)(t) → 0 as t → ∞ agrees
well with the observed behavior of the polynomials φn−1 at the nodes; see Table 3 of
Section 5.

4. An Inequality for Kummer’s function. Inequality (19), the connection
between Gram polynomials and the confluent hypergeometric function exposed in
Section 3, and numerical evidence suggested the stronger inequality (16). The latter
inequality was first presented as a conjecture in 1985 [3], and is also discussed in
[4, p. 21]. For completeness, and because of its independent interest, we verify a
generalization of this conjecture with sharp constants.

Theorem 4.1. For all ζ ≥ 0, x ≥ 0, and c ≥ 1/2

F

(
1 − ζ

2
, c, x

)
≤ F (1/2, c, x).(38)

Moreover, c ≥ 1/2 is sharp, i.e., for c < 1/2 and x > 0, there is a ζ > 0 such that
inequality (38) fails.

Proof. Suppose that x > 0 and ζ > 0, and consider the special case c = 1/2. We
will make use of the following classical identity, see [11, p. 1085, #9.211-3],

F (−ν, α + 1, x) =
Γ(α + 1)

Γ(α + ν + 1)
exx−α

2

∫ ∞

0

e−ttν+ α
2 Jα(2

√
xt)dt,(39)

for α+ ν +1 > 0, where Jα is the Bessel function of order α. Using identity (39) with
ν = ζ−1

2 and α = −1/2, it follows that α + ν + 1 = ζ/2 > 0, and

Jα(z) = J− 1
2
(z) =

√
2
πz

cos(z),

see [11, p. 977, #8.464-2]. Therefore,

F

(
1 − ζ

2
, 1/2, x

)
= ex Γ(1/2)

Γ(ζ/2)
x

1
4

∫ ∞

0

e−tt
ζ
2− 3

4 J−1/2(2
√

xt)dt

= ex Γ(1/2)
Γ(ζ/2)

x
1
4

∫ ∞

0

e−tt
ζ
2− 3

4

√
2

2π
√

xt
cos(2

√
xt)dt
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= ex 1
Γ(ζ/2)

∫ ∞

0

e−tt
ζ
2−1 cos(2

√
xt)dt

≤ ex 1
Γ(ζ/2)

∫ ∞

0

e−tt
ζ
2−1dt

= ex = F (1/2, 1/2, x),

which implies that

F

(
1 − ζ

2
, c, x

)
≤ F (1/2, c, x) for c = 1/2 and for all x ≥ 0 and ζ ≥ 0.(40)

Now suppose that c > 1/2. We wish to relate F (a, c, x) to F (a, 1/2, x). The
identity, see [11, p. 863, #7.613-1],

F (a, c, x) =
Γ(c)x1−c

Γ(γ)Γ(c − γ)

∫ x

0

tγ−1(x − t)c−γ−1F (a, γ, t) dt for c > γ > 0,

with x > 0, ζ > 0 and c > γ = 1/2, yields

F

(
1 − ζ

2
, c, x

)
=

Γ(c)x1−c

Γ(1/2)Γ(c − 1/2)

∫ x

0

t−
1
2 (x − t)c− 3

2 F

(
1 − ζ

2
, 1/2, t

)
dt

≤ Γ(c)x1−c

Γ(1/2)Γ(c − 1/2)

∫ x

0

t−
1
2 (x − t)c− 3

2 F (1/2, 1/2, t)dt(41)

= F (1/2, c, x),

where the inequality in (41) follows from (40) and the fact that

Γ(c)x1−c

Γ(1/2)Γ(c− 1/2)
t−

1
2 (x − t)c− 3

2 > 0

for x > t ≥ 0 and c > 1/2. This establishes that

F

(
1 − ζ

2
, c, x

)
≤ F (1/2, c, x) for all ζ ≥ 0, x ≥ 0, and c ≥ 1/2.(42)

The sharpness of c = 1/2 will follow from (the proof of) Theorem 4.2.
Another concise version of inequality (42) is revealed when it is expressed in terms

of the Whittaker functions Mλ,µ, which are given by, see [11, p. 1087, #9.220-2],

Mλ,µ(x) := xµ+ 1
2 e−x/2F

(
µ − λ +

1
2
, 1 + 2µ, x

)
.

Theorem 4.2. Suppose that λ ≥ µ ≥ −1/4. Then for all x ≥ 0,

Mλ,µ(x) ≤ Mµ,µ(x).(43)

Moreover, µ = −1/4 is sharp, i.e., for any µ < −1/4 and x > 0, there is a λ > µ
such that inequality (43) is invalid.
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Proof. Suppose that −1/4 ≤ µ < λ and x > 0. For c = 1+2µ and 1−ζ
2 = µ−λ+ 1

2
it follows that c ≥ 1/2 and ζ = 2(λ − µ) > 0. We have

Mλ,µ(x) = xµ+ 1
2 e−x/2F

(
µ − λ +

1
2
, 1 + 2µ, x

)

= x
c
2 e−x/2F

(
1 − ζ

2
, c, x

)

≤ x
c
2 e−x/2F (1/2, c, x)(44)

= Mµ,µ(x),

where the inequality (44) follows from (42). Therefore, inequality (43) holds for all
λ ≥ µ ≥ −1/4 and x ≥ 0.

In order to demonstrate the sharpness of µ = −1/4, we note the asymptotic
relationship for large λ > 0 given by, see [11, p. 1089, #9.228],

Mλ,µ(x) ∼ Γ(1 + 2µ)√
π

λ−µ− 1
4 x

1
4 cos(2

√
λx − µπ − π

4
).

Now let x0 > 0 and µ0 ∈ (−1/2,−1/4) both be fixed. For each positive integer n, let
λn satisfy

2
√

λnx0 − µ0π − π/4 = 2nπ, i.e., λn = (2nπ + µ0π +
π

4
)2/(4x0).

Since −µ0 − 1
4 > 0, it follows that λ

−µ0− 1
4

n → ∞ as n → ∞. Thus, the expres-

sion Γ(1+2µ0)√
π

λ
−µ0− 1

4
n x

1
4
0 can be made arbitrarily large by choosing a sufficiently large

positive integer n. In particular, there is a λn sufficiently large, such that

Mλn,µ0(x0) ∼ Γ(1 + 2µ0)√
π

λ
−µ0− 1

4
n x

1
4
0 cos

(
2
√

λnx0 − µ0π − π

4

)

=
Γ(1 + 2µ0)√

π
λ
−µ0− 1

4
n x

1
4
0 cos(2nπ)

=
Γ(1 + 2µ0)√

π
λ
−µ0− 1

4
n x

1
4
0 · 1

> Mµ0,µ0(x0).

Therefore, for each x > 0 and µ ∈ (−1/2,−1/4), there is a λ > µ, such that
Mλ,µ(x) > Mµ,µ(x). This proves the sharpness of µ = −1/4, and, hence, the sharpness
of c = 1 + 2µ = 1/2 in Theorem 4.1.

5. Numerical Examples. The behavior of the Gram polynomials φn is dis-
played in three tables. The tables compare φn(x), for several values of x, with the
function φ(ζ)(t), which is given by either (34), (35) or (37) depending on the value of
ζ. Throughout this section x := 1 − ζ/m and t := (n − 1

2 )/m
1
2 . We use the notation

M(E) for the number M · 10E in the tables. All computations were carried out on a
VAX 11/780 computer in double precision arithmetic, i.e., with about 15 significant
digits.
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Table 1 shows the error (φn−1(x)/
√

2m
1
2 − φ(ζ)(t))/

√
t for ζ = 0 and ζ = 1/2.

Columns 4 and 5 show that φn−1(1) > φn−1(1− 1
2m), in agreement with our analysis.

Columns 6 and 7 illustrate the convergence of the error (φn−1(x)/
√

2m
1
2 − φ(t))/

√
t

as m increases and t is in a fixed interval. Note that the error is positive.
Table 2 displays the rapid growth of φ(0)(t) with t. Recall that

√
2m1/2φ(0)(t)

approximates φn(1) for t = (n− 1
2 )/m1/2. The fast growth of φ(0)(t) with t indicates

that φn(1) grows rapidly with t = (n− 1
2 )/m

1
2 . The table suggests that the choice of

m and n should be such that t = (n− 1
2 )/m

1
2 ≤ 2.5 in order to keep the norm ‖φn‖∞

modest. The norm ‖φn−1‖ = φn−1(1) can be determined from Table 1 for such values
of m and n.

Table 3 shows the behavior of φn−1(xm)/
√

2m
1
2 , where the node xm is defined

by (1). Thus, ζ = 1. The table shows that both φ(1)(t) and φn−1(xm)/
√

2m
1
2 are

small for large values of t.
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11



REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS Applied Math-
ematics Series, 55, 1968.

[2] R. Askey, Orthogonal expansions with positive coefficients II, SIAM J. Math. Anal., 2 (1971),
340-346.

[3] R. W. Barnard, Survey of open problems and conjectures in complex analysis and special
functions. Talk presented at the Symposium on the Proof of the Bieberbach Conjecture,
Purdue University, West Lafayette, 1985.

[4] R. W. Barnard, Open problems and conjectures in complex analysis, Computational Methods
and Function Theory, eds. S. Ruscheweyh, E. B. Saff, L. C. Salinas, R. S. Varga, Lecture
Notes in Mathematics # 1435, Springer, New York, 1990.

[5] H. Björk, Contribution to the problem of least squares approximation, Report Na 71.37, Dept.
of Numerical Analysis, Royal Institute of Technology, Stockholm, 1971.

[6] H. Brass, Error estimates for least squares approximation by polynomials, J. Approx. Theory,
41 (1984), 345-349.
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Table 1

Accuracy for increasing m for t in a fixed interval; x = 1 − ζ/m

φn−1(x)/
√

2m
1
2

(
φn−1(x)√

2m
1
2

− φ(ζ)(t)

)
/
√

t

m n − 1 t ζ = 0 ζ = 1
2 ζ = 0 ζ = 1

2

20 1 0.34 5.80(−1) 5.65(−1) 4.61(−4) 3.37(−3)
20 5 1.23 1.29 8.67(−1) 1.22(−2) 6.53(−3)
20 10 2.35 7.08 2.48 6.05(−1) 1.99(−1)
40 1 0.24 4.87(−1) 4.81(−1) 1.15(−4) 1.62(−3)
40 5 0.87 9.68(−1) 7.97(−1) 2.06(−3) 2.53(−3)
40 10 1.66 2.01 1.02 2.42(−2) 8.98(−3)
40 15 2.45 8.29 2.81 4.02(−1) 1.30(−1)
80 1 0.12 4.10(−1) 4.07(−1) 2.87(−5) 7.97(−4)
80 5 0.61 7.92(−1) 7.19(−1) 4.57(−4) 9.77(−4)
80 10 1.17 1.22 8.50(−1) 2.53(−3) 1.48(−3)
80 15 1.73 2.19 1.06 1.52(−2) 5.51(−3)
80 20 2.29 5.65 2.04 1.07(−1) 3.53(−2)
80 21 2.41 7.17 2.48 1.60(−1) 5.21(−2)

Table 2

Growth of φ(0)(t) := t
1
2 I0(t2/2)

t φ(0)(t)

2.0 3.22
2.5 8.57
3.0 3.03(1)
3.5 1.41(2)
4.0 8.55(2)

Table 3

m = 81 and ζ = 1

t φ(1)(t) n − 1 φn−1(xm)/
√

2m
1
2

0.5 6.24(−1) 4 6.25(−1)
1.5 3.98(−1) 13 3.96(−1)
2.5 6.95(−2) 22 6.68(−2)
3.5 4.09(−3) 31 3.48(−3)
4.5 8.50(−5) 40 5.32(−5)
5.5 1.33(−7) 49 2.07(−7)
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