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CONCENTRATION OF AREA IN HALF-PLANES

ROGER W. BARNARD, CLINT RICHARDSON, AND ALEXANDER YU. SOLYNIN

(Communicated by Juha M. Heinonen)

Abstract. For the standard class S of normalized univalent functions f an-
alytic in the unit disk U , we consider a problem on the minimal area of the
image f(U) concentrated in any given half-plane. This question is related to
a well-known problem posed by A. W. Goodman in 1949 that regards mini-
mizing area covered by analytic univalent functions under certain geometric

constraints. An interesting aspect of this problem is the unexpected behavior
of the candidates for extremal functions constructed via geometric considera-
tions.

1. Introduction

For a function f ∈ S,

f(z) = z + a2(f)z2 + . . . ,

analytic and univalent in the unit disk U = {z : |z| < 1}, the Dirichlet integral

(1.1) D(f) =
∫

U

|f ′|2 dσ = π

∞∑
n=1

n|an(f)|2

measures the area of the image f(U). From (1.1), it is immediate that

(1.2) D(f) ≥ π

with equality only for the identity mapping. (1.2) gives the best lower bound for
the area of the whole image f(U). In this note we are interested in a similar sharp
lower bound for the area of f(U) concentrated in a half-plane {w : �e−iαw > d}
for any given 0 ≤ α < 2π and d ∈ R. In a certain sense this problem is a half-
plane version of a well-known omitted area problem posed by A. W. Goodman in
1949, which has a long history, as noted in [2]. Goodman’s problem concerned the
minimization of the area of f(U) concentrated in the disk Ur = {w : |w| < r} for
any given r > 0.

Since the class S is rotationally invariant, i.e. e−iαf(eiα) ∈ S if f ∈ S, we may
assume that α = 0 and thus consider the area in the half-plane H

+
d = {w : �w > d}.
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Figure 1. Graph of A(d)

Let H
−
d = {w : �w < d}. Since f(z) = z(1 + z)−1 is in S and maps U onto H

−
1/2,

it follows that the minimal area is zero and the problem is trivial for d ≥ 1/2. For
the non-trivial range d < 1/2, the solution to the problem is given by

Theorem 1.1. For f ∈ S, let Af (d) = Area(f(U) ∩ H
+
d ). Then

(1.3) Af (d) ≥
{
πβ2

(
1 + 2dβ−1(3β − 4β1/2 + 1)

)
if d0 ≤ d < 1/2,

π if d ≤ d0,

where β = β(d) > 1/4 is the smallest root of the equation

(1.4) 2β
(

(3β1/2 − 1)(1 − β1/2) log
1 − β1/2

β1/2
+

1
2
(5 − 6β1/2)

)
= d,

which has a unique solution for −1 < d < 1/2 and two solutions for −1.1174 < d ≤
−1, and d0 = −1.1173... is a solution of the equation

(1.5) β2
(
1 + 2dβ−1(3β − 4β1/2 + 1)

)
= 1

with β = β(d), unique in the interval −1.1174 < d < 1/2.
For d0 < d < 1/2 there is a unique extremal function

(1.6) fd(z) = 4iβ sin θ0
∫ τ

ie−iθ0/2

τ(τ + i)2

(τ − i)2(τ2 + 2i cos(θ0/2) − 1)2
dτ,

where

(1.7) τ = ieiθ0/2
√

(z − e−iθ0)/(z − eiθ0)

with the principle branch of the radical and

(1.8) θ0 = θ0(d) = 4 cos−1(4β)−1/4.

For d < d0 the unique extremal function is the identity mapping f(z) = z. For
d = d0, there are two extremal functions: the identity mapping and fd defined by
(1.6)–(1.8).

Let A(d) = inf{Af (d) : f ∈ S}. The graph of A(d) is shown in Figure 1. Figure 2
displays the extremal domains fd(U) for some typical values of d. Looking at Figure
1, one may wonder why the function A(d) is not differentiable at d = d0 as such
is rare in extremal problems concerning conformal mappings. The reason for this
unexpected result is that the left-hand side of (1.4) is not monotone (see Lemma
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Figure 2. Extremal domains for some typical values of d

4.1) and for d < −1, (1.4) has two solutions. Taking into account the identity
mapping, this gives three functions in S providing critical points for the considered
minimal area problem. The graph of A(d) reflects the fact that for different ranges
of d, the global minimum is attained by different local minima.

The proof of Theorem 1.1 is given in Section 3. In Section 2, we apply sym-
metrization and local variations developed in [2] to prove some important quali-
tative properties of the extremal functions and extremal domains. This allows us
to identify in Lemma 2.4 the closed form for the extremal functions. In Section 4,
we prove two monotonicity results needed to justify the uniqueness assertions of
Theorem 1.1.

2. Qualitative properties of the extremals

Since the area functional Af (d) is lower semi-continuous, the existence of an
extremal function, at least one for each d, easily follows from the compactness of
the class S. Thus the proof of our first lemma is standard (see [1, 2]) and left to
the reader.

Lemma 2.1. For every d < 1/2, there exists f ∈ S such that Af (d) = A(d). In
addition, A(d) is continuous for d ≤ 1/2.

The following lemma describes the most important geometric properties of ex-
tremal domains. We remind the reader that a domain D ⊂ C is called Steiner
symmetric (possesses Steiner symmetry) w.r.t. R if for every x0 ∈ R the intersec-
tion D∩{z = x0 + it : −∞ < t <∞} is either empty or consists of a single interval
symmetric w.r.t. R. Similarly, a domain D is called circularly (Pólya) symmetric
w.r.t. R− = (−∞, 0] if for every r ≥ 0 the intersection D ∩ {z : |z| = r} is either
empty, coincides with {z : |z| = r}, or consists of a single arc symmetric w.r.t. R−;
see [3].

Lemma 2.2. If f ∈ S is extremal for A(d), d < 1/2, then Df = f(U) possesses
Steiner symmetry w.r.t. R and circular symmetry w.r.t. R−. If Df is bounded, then
Df = U and f(z) = z.

If Df is unbounded, then H
−
d ⊂ Df and the free boundary Lfr = ∂Df ∩ H

+
d is

a Jordan, locally rectifiable arc joining the points d ± icf for some 0 < cf ≤ ∞
depending on f .

Further, if cf < ∞, then the non-free part Lnf of the boundary consists of two
rays L±

nf = {w = d ± it : t ≥ cf} and Lfr is of finite length and satisfies the
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Lavrent′ev condition

(2.1) length (J(w1, w2)) ≤ C |w1 − w2| for w1, w2 ∈ L̄fr,

where C is a constant independent of w1, w2 and J(w1, w2) is the shortest arc of
L̄fr between w1 and w2.

Proof. The arguments establishing the Steiner and circular symmetries are standard
(see [1, 2]) and based on the following well-known results (see [3, 4]). Steiner
symmetrization w.r.t. R preserves the area in vertical strips and strictly increases
the conformal radius unless the domain already possesses the symmetry. Similarly,
circular symmetrization w.r.t. R− diminishes the area in the half-plane H

+
d and

strictly increases the conformal radius unless the domain already possesses the
symmetry.

Let R(D, z0) denote the conformal radius of the domain D at the point z0 (see
[3, 4]). If Df∩H

−
d �= ∅, then the Steiner symmetry ofDf implies thatD∗ = Df∩H

−
d

is a simply connected domain such that R(D∗, 0) > R(Df , 0) and Area(D∗∩H
+
d ) =

Af (d). These two relations lead, by a standard subordination argument, to a
contradiction of the extremality of f . Thus, either Df ∩ H

−
d = ∅ or H

−
d ⊆ Df .

If Df ∩ H
−
d = ∅, then clearly d < 0 and Df ⊂ U|d| since Df is circularly

symmetric w.r.t. R−. Since R(Df , 0) = 1, the latter inclusion shows that d ≤ −1.
Thus Af (d) = Area(Df ) ≥ π, which implies that the identity mapping must be the
unique extremal for the case Df ∩ H

−
d = ∅.

Consider, then, H
−
d ⊆ Df . Let a = inf{|w| : w ∈ Lfr}. To show that L+

fr =
Lfr ∩ {w : �w ≥ 0} is Jordan, we note that the real-valued function τ(w) =
|w|+ a−�w, which is clearly continuous, is one-to-one on L+

fr. Indeed, let w1 and
w2 be two distinct points of L+

fr. If |w1| = |w2|, then �w1 �= �w2 and therefore
τ(w1) �= τ(w2). If, for instance, |w1| < |w2|, then it follows from the Steiner and
circular symmetries that �w2 ≤ �w1 and so again τ(w1) �= τ(w2). Since τ is
continuous and one-to-one, it follows that L+

fr is Jordan; clearly the same is true
for Lfr.

To show that L+
fr is locally rectifiable, we split it into two parts L++ = L+

fr∩H+
0

and L+− = L+
fr∩H−

0 (which may be empty). Since �w and �w both are monotone
when w runs along L++, the local rectifiability of L++ easily follows as well as the
Lavrent′ev condition (2.1) with constant C = 2.

To show that L+− is locally rectifiable, we fix points w0 ∈ L+− and wT ∈ L++

such that �wT = 0, then consider a polygonal line LN with vertices w0, w1, . . . , wN
= wT on L+− such that all distances |wk+1 − wk| are small enough. Since Df

possesses Steiner and circular symmetry, it follows that �wk ≤ �wk+1 and |wk| ≥
|wk+1|. To estimate the length of LN , we replace each linear segment [wk, wk+1] by
the union of the vertical segment [wk,�wk+ihk] where hk = (|wk+1|2−(�wk)2)1/2
together with the circular arc γk centered at the origin with end points at �wk+ihk
and wk+1. Such vertical segments and circular arcs always exist if the distances
|wk+1 − wk| are small enough. Then

(2.2) lengthLN ≤
N−1∑
k=0

(�wk − hk) +
N−1∑
k=0

length γk.

It is not difficult to show that each sum in (2.2) decreases if we replace LN with
another polygonal line LN ′ by adding new vertices. This combined with (2.2) shows
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that the length of LN is bounded by a constant independent of N . Therefore, L+−

is locally rectifiable.
If cf < ∞, then the arguments above imply the desired assertion on Lnf . The

same arguments applied to the shortest arc J(wk, wk+1) lead to the inequalities

length (J(wk, wk+1)) ≤ �wk − hk + lengthγk ≤ C |wk − wk+1|
with some constant C independent of wk, wk+1 ∈ L̄+−. The latter inequality
implies that L+− and therefore L̄fr = L̄++∪ L̄+− satisfies the Lavrent′ev condition
(2.1). �

Let lfr = {eiθ : |θ| ≤ θ0} be the “free arc”; that is, lfr is the preimage of Lfr
under the mapping f . Similarly, let l±nf = f−1(L±

nf ), e
±iθ0 = f−1(d± icf).

Lemma 2.3. For a fixed d < 1/2, let f ∈ S be an unbounded extremal for A(d).
Then: (i) |f ′(z)| = β with some 0 < β < 1 for all z ∈ lfr; (ii) |f ′(eiθ)| strictly
increases from β to ∞ as θ runs from θ0 to π.

Proof. First we show that |f ′(z)| is constant a.e. on lfr. Since Lfr is Jordan locally
rectifiable, it follows that the non-zero finite limit

(2.3) f ′(ζ) = lim
z→ζ,z∈Ū

f(z) − f(ζ)
z − ζ

�= 0,∞

exists a.e. on lfr; see [5, Theorem 6.8, Exercise 6.4.5]. Assume that

(2.4) 0 < β1 = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 <∞
for eiθ1 , eiθ2 ∈ lfr. Note that (2.3), (2.4) allow us to apply the two-point variational
formulas of [2, Lemma 10]. Namely, for fixed positive k1, k2 such that 0 < k1 < 1 <
k2 and k1β

−1
1 > k2β

−1
2 and fixed ϕ > 0 small enough, we consider the two-point

variation D̃ of D centered at w1 = f(eiθ1) and w2 = f(eiθ2) with inclinations ϕ
and radii ε1 = k1ε, ε2 = k2ε respectively; see [2, Section 3]. Computing the change
in the area by [2, formula (3.32)], we find

(2.5) Area D̃ − AreaD =
2πϕ− sin 2πϕ

2 sin2 πϕ
ε2(k2

1 − k2
2) + o(ε2) < 0

for all ε > 0 small enough. Similarly, applying [2, formula (3.31)], we get

(2.6) log
R(D̃, 0)
R(D, 0)

=
[
ϕ(2 + ϕ)
6(1 + ϕ)2

k2
1

β2
1

− ϕ(2 − ϕ)
6(1 − ϕ)2

k2
2

β2
2

]
ε2 + o(ε2) > 0

for all ε > 0 small enough and ϕ chosen such that the expression in the brackets is
positive.

Inequalities (2.5) and (2.6) lead to a contradiction to the extremality of f for
A(d), via a standard subordination argument. Thus |f ′(eiθ)| = β a.e. on lfr with
some β > 0. This implies, in particular, that lengthLfr <∞ and therefore cf <∞,
and lnf �= ∅.

Since Df is Steiner symmetric w.r.t. R, the strict monotonicity of |f ′| along lnf
follows from [2, Lemma 4]. To prove that |f ′(eiθ)| > β for all eiθ ∈ lnf , we assume
that β = |f ′(eiθ1)| > |f ′(eiθ2)| = β2 with eθ1 ∈ lfr and some eθ2 ∈ lnf . Then
applying the two-point variation as above, we get inequalities (2.5), (2.6), contra-
dicting the extremality of f for A(d), again via a subordination argument. Hence,
|f ′(eiθ)| ≥ β for all eiθ ∈ lnf which, when combined with the strict monotonicity
property of |f ′|, leads to the strict inequality |f ′(eiθ)| > β for eiθ ∈ lnf .
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To prove that |f ′| = β everywhere on lfr, we consider the function g = ϕ◦f with
ϕ(w) = (w−(d−s))/(w−(d+s)), where s > inf{|w| : w ∈ Lfr}. Lemma 2.2 implies
that Dg = g(U) is Jordan rectifiable. Moreover, since Lfr satisfies the Lavrent′ev
condition, it follows that Dg is a Lavrent′ev domain and hence a Smirnov domain;
see [5, Sections 7.3, 7.4]. Thus, log |g′| can be represented by the Poisson integral

(2.7) log |ϕ′(w)f ′(z)| = log |g′(z)| =
1
2π

∫ 2π

0

P (r, θ − t) log |g′(eit)| dt

with boundary values defined a.e. on T; see [5, p.155]. (2.7) easily implies that
|g′(eiθ)| = β|ϕ′(f(eiθ))| and therefore |f ′(eiθ)| = β for all eiθ ∈ lfr. In addition,
(2.7) implies that log f ′ is bounded on U outside any neighbourhood of the point
z = −1.

To show that f ′ is continuous at e±iθ0 , we note that by the reflection principle,
f can be continued analytically through lnf and f ′ can be continued analytically
through lfr. This implies that f can be considered as a function analytic in a slit
disk {z : |z − eiθ0 | < ε} \ [eiθ0 , (1 + ε)eiθ0 ] with ε > 0 small enough.

Using the Julia-Wolff lemma ([5, Proposition 4.13]), boundedness of log f ′, and
well-known properties of the angular derivatives ([5, Propositions 4.7, 4.9]), one can
prove that f ′ has a finite limit f ′(eiθ0), |f ′(eiθ0)| = β, along any path in U ending
at eiθ0 . The details of this proof are similar to the arguments in [2, Lemma 13].

Since |f ′| takes its minimal values on T, it follows that |f ′(z)| > β for all z ∈ U.
In particular, β < |f ′(0)| = 1. The proof is complete. �

Summing up the results of this section we can prove the following lemma, which
allows us to find a closed form for the unbounded extremal functions.

Lemma 2.4. Let f ∈ S be an unbounded extremal for A(d), d < 1/2. Then
ϕ(z) = zf ′(z) maps U univalently onto a “fork domain”:

F (β, ψ0) = C \ ({w = βeiθ : |θ| ≤ ψ0} ∪ {w = t : t ≥ β})
with ψ0 = ψ0(β) = π − cos−1(8β − 8β1/2 + 1) and some β = β(d) ∈ (1/4, 1).

Proof. (a) First we show that f ′ is univalent in U. By Lemma 2.3, |f ′(eiθ)| increases
from β to ∞ as θ runs from θ0 to π. Since arg f ′(eiθ) = −θ strictly decreases from
−θ0 to −π as θ runs from θ0 to π, it follows that f ′ maps l+nf one-to-one onto an
analytic Jordan arc δ+ lying in {w : |w| > β,−π < arg w < −θ0}.

Since |f ′| > β in U and |f ′| = β on lfr, it follows that f ′′(eiθ) �= 0 for eiθ ∈ lfr.
Thus f ′ is locally univalent on lfr and therefore arg f ′(eiθ) is monotone on lfr.
Let �n(θ) be the outer unit normal to Lfr at f(eiθ). Then 0 ≤ arg �n(θ) ≤ π for
0 ≤ θ ≤ θ0 since Df is Steiner symmetric. Since arg �n(θ) = θ+arg f ′(eiθ), we have
−θ0 ≤ arg f ′(eiθ) ≤ π for 0 ≤ θ ≤ θ0. The latter shows that the total variation
of arg f ′(eiθ) on l+fr is < 2π, which implies that f ′ maps l+fr one-to-one onto the
arc γ+ = {βeiψ : −θ0 ≤ ψ ≤ 0}. Since f ′ is symmetric w.r.t. R and f ′(0) = 1,
the argument principle implies that f ′ maps U one-to-one onto a domain G � 1
bounded by L = δ̄+ ∪ δ− ∪ γ̄+ ∪γ−, where δ− = {w : w̄ ∈ δ+}, γ− = {w : w̄ ∈ γ+}.

Since |f ′(eiθ)| is monotone on l+nf , it follows that G is circularly symmetric w.r.t.
R+ = {w = t : t ≥ 0}. Hence by [2, Lemma 5], |f ′′(eiθ)| strictly increases as θ runs
from 0 to θ0.

(b) Considering boundary values of ϕ, we have arg ϕ(eiθ) = 0 for 0 < |θ − π| ≤
π − θ0 since � f(eiθ) is constant for such θ. Since |ϕ(eiθ)| = |f ′(eiθ)| strictly
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increases in θ0 < θ < π, ϕ maps l+nf continuously and one-to-one onto the ray
{w = t : t ≥ β}.

For 0 ≤ θ ≤ θ0, |ϕ(eiθ)| = β and

∂

∂θ
argϕ(eiθ) =

∂

∂θ
� log(eiθf ′(eiθ)) = 1 +

eiθf ′′(eiθ)
f ′(eiθ)

= 1 − β−1|f ′′(eiθ)|

since eiθf ′′(eiθ)/f ′(eiθ) is real non-positive for 0 ≤ θ ≤ θ0. Since |f ′′(eiθ)| strictly
increases in 0 < θ < θ0, it follows that ∂

∂θ arg ϕ(eiθ) changes its sign at most once in
0 < θ < θ0. Since arg ϕ(1) = arg ϕ(eiθ0) = 0 and the total variation of arg ϕ(eiθ)
on lfr is < 2π, it follows that ∂

∂θ arg ϕ(eiθ) changes its sign from ‘−’ to ‘+’ exactly
once on 0 < θ < θ0, say at the point θ = θ1. Let ϕ(eiθ1) = βe−iψ0 , 0 < ψ0 < π.

The previous arguments show that ϕ maps l+fr one-to-one in the sense of bound-
ary correspondence onto the circular slit along the arc {w = βeiψ : −ψ0 ≤ ψ ≤ 0}.
By the reflection principle and the argument principle, ϕ maps U conformally and
one-to-one onto the fork domain F (β, ψ0). Since ϕ′(0) = f ′(0) = 1, the Koebe
1/4–theorem shows that β > 1/4. The same normalization ϕ′(0) = 1 leads, after
a lengthy computation, to the relation ψ0 = π − cos−1(8β − 8β1/2 + 1), which has
already appeared a few times in the literature; see [1]. �

3. Proof of Theorem 1.1

Proof. Assume that f is an unbounded extremal for A(d) with d < 1/2. By
Lemma 2.4, ϕ = zf ′ maps U conformally onto a fork domain F (β, ψ0). The function
ϕ can be represented as a composition ϕ = g ◦ τ with

(3.1) g(τ) = β
(τ + i)2(τ − ie−iθ0/2)(τ − ieiθ0/2)
(τ − i)2(τ + ie−iθ0/2)(τ + ieiθ0/2)

and τ = τ(z) defined by (1.7). Indeed, the function τ = τ(z) maps U onto the first
quadrant Q1 = {τ : � τ > 0,� τ > 0} and, considering boundary values and using
the argument principle, one can easily check that w = g(τ) maps Q1 onto a fork
domain. Since τ(0) = ie−iθ0/2, the normalization ϕ′(0) = g′(τ(0))τ ′(0) = 1 gives
(1.8). Since f(z) =

∫ z
0 z

−1ϕ(z) dz, changing the variable of integration z = z(τ),
we obtain (1.6).

To compute the area Af (d) of Df (d) = Df ∩ H
+
d , we apply the standard line

integral formula for area to the function f1(z) = f(z) − d:

Af (d) =
1
2
�

∫
∂Df (d)

w̄ dw =
1
2
�

∫
Lfr

w̄ dw =
1
2
�

∫ θ0

−θ0
f1(eiθ)eiθf ′

1(e
iθ) dθ

=
β2

2
�

∫ π

−π

f1(eiθ)eiθ

eiθf ′
1(eiθ)

dθ =
β2

2
�

∫
|z|=1

f1(z)
z2f ′

1(z)
dz(3.2)

=πβ2�Res
[
f1
z2f ′

1

, 0
]

= πβ2� [(f1/f ′
1)

′ |z=0 ] = πβ2(1 + d f ′′(0)).

Differentiating (1.6) with τ = τ(z) defined by (1.7) yields

(3.3) f ′′(0) = 2β−1(3β − 4β1/2 + 1).

Combining (3.2) and (3.3) we obtain inequality (1.3) under the assumption that f
is unbounded.



2098 R. W. BARNARD, C. RICHARDSON, AND A. YU. SOLYNIN

It turns out that the minimal area and closed form for the extremal function can
be nicely expressed in terms of the parameter β or via (1.8) in terms of θ0. To find
the relation between β and d, we note that � f(eiθ0) = d; thus,

(3.4) d = � f(eiθ0) = 4β sin θ0�
∫ ie−iθ0/2

0

τ(τ + i)2 dτ
(τ − i)2(τ + ieiθ0/2)2(τ + ie−iθ0/2)2

.

Expanding the integrand in (3.4) into partial fractions and then integrating, we
come to an equation equivalent to (1.4):

(3.5) d = p(β1/2),

where β =
(
4 cos4(θ0/4)

)−1 and

(3.6) p(x) = x2[2(1 − x)(3x− 1) log((1 − x)/x) + 5 − 6x].

Integration leading to (3.5), (3.6) is rather lengthy and was performed by hand,
then checked with “Mathematica” and “Maple”.

(3.2), (3.3), and (3.5) can be used to express the minimal area Af (d) in terms
of β: Af (d) = πq(β1/2), where

(3.7) q(x) = x4(1 + 2x−2p(x)(3x2 − 4x+ 1)).

It turns out that functions (3.6) and (3.7) are not monotone, which makes the
problem harder and more interesting.

By Lemma 4.1, for every d, −1 < d ≤ 1/2 and for d = d̂, where d̂ = p(β̂1/2) =
−1.1464 . . . and β̂ = x̂2 = .9385 . . . are determined in Section 4, equation (3.5) has
a unique solution β = β(d). For d̂ < d < −1, it has two solutions β1 = β1(d),
1/2 < β1 < β̂ and β2 = β2(d), β̂ < β2 < 1. For d < d̂, (3.5) has no solutions and
therefore there are no unbounded extremal functions for such d.

According to Lemma 4.2, if the parameter β corresponding to the extremal
function f is > β0, where β0 = .8976 . . . is defined by equation q(β0

1/2) = 1, then
Af (d) = πq(β1/2) > π. Since by Lemma 4.1, d = p(β1/2) < −1 for all β ≥ β∗ with
β∗ = .8370 . . . defined by p(β1/2

∗ ) = −1 and since β∗ < β0, the identity mapping
provides a smaller area than f does, contradicting conjectured extremality of f .
Therefore, if f is an unbounded extremal for A(d), then the corresponding value
of β is ≤ β0. Since β0 < β̂ and p(β1/2) is monotone for 1/4 < β ≤ β̂, it follows
that for each d, d0 ≤ d < 1/2, where d0 = p(β1/2

0 ) = −1.1173 . . ., equation (3.5)
has a unique solution β = β(d) ≤ β0. This implies the uniqueness assertion of
Theorem 1.1 and finishes its proof. �

4. Monotonicity lemmas

Lemma 4.1. There exists x̂ = .9688 . . . such that p(x) strictly decreases from 1/2
to d̂ = −1.1464 . . . when x runs from 1/2 to x̂ and strictly increases from d̂ to −1
when x runs from x̂ to 1.

Proof. Differentiating, we find p′(x) = 4xu(x), where

(4.1) u(x) = 3 − 6x− (6x2 − 6x+ 1) log((1 − x)/x).

To show that the equation u(x) = 0 has a unique solution on 1/2 < x < 1, we
note that

u′′′(x) =
−2

x3(x− 1)3
;
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so u′′′(x) > 0 on (1/2, 1) and hence u′′(x) is increasing on this interval. Now,
u′′(1/2) = 0 and so u(x) is concave up on (1/2, 1). Since u(1/2) = 0, u(3/5) < 0,
and u → +∞ as x → 1−, it follows that u has exactly one zero x̂ on (1/2, 1).
Solving with “Maple”, we get x̂ = .9688 . . . The lemma is proved. �
Lemma 4.2. The function q(x) strictly increases from 0 to q̂ = 1.0089 . . . when x
runs from 1/2 to x̂ and strictly decreases from q̂ to 1 when x runs from x̂ to 1.

Proof. Differentiating, we find q′(x) = 16x3(x−1)(3x−1)u(x), where u(x) is defined
by (4.1), and the desired result follows from the proof of Lemma 4.1. �
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