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Abstract

We prove a sharp lower bound of the form capE ≥ (1/2)diamE ·
Ψ(areaE/((π/4)diam 2E)) for the logarithmic capacity of a compact
connected planar set E in terms of its area and diameter. Our lower
bound includes as special cases G. Faber’s inequality capE ≥ diamE/4
and G. Pólya’s inequality capE ≥ (areaE/π)1/2. We give explicit for-
mulations, functions of (1/2)diamE, for the extremal domains which
we identify. 1 2

1 Introduction

The logarithmic capacity, capE, of a continuum ( = compact connected set)
E in the complex plane � is defined by

− log capE = lim
z→∞

(g(z) − log |z|), (1.1)
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where g(z) denotes Green’s function of the unbounded component Ω(E) of
� \ E having singularity at z = ∞.

The measure of a set described by the logarithmic capacity is very impor-
tant in potential theory, analysis, and PDE’s. It combines several character-
istics of a compact set, among which are the geometric concept of transfinite
diameter due to M. Fekete, the concept of Chebyshev’s constant from poly-
nomial approximation, and the concept of the outer radius from conformal
mapping, see [D, Du, G, H].

In general, computation of capE is a difficult problem but there are
several estimates of capE in terms of geometric characteristics of E that are
very useful in applications, see [PSz]. For instance,

(1/4)diamE ≤ capE ≤ (1/2)diamE, (1.2)

((1/π)areaE)1/2 ≤ capE <∞. (1.3)

The first inequality in (1.2) was found by G. Faber [F] in a different form.
The inequalities in (1.3) and the second inequality in (1.2), which is valid for
any (not necessary connected) compact set, were proved by G. Pólya [Po].
Equality occurs only for rectilinear segments in Faber’s inequality and for
disks in Pólya’s inequalities. The case of equality in the right inequality in
(1.2) was studied by J. Jenkins [J] and A. Pfluger [Pf].

We will employ the following notation throughout this paper: let � =
{z : |z| < 1} and � r(c) = {z : |z − c| < r}, so that � = � 1(0). Finally, let
� ∗ = � \ � .

In this paper, we prove the following theorem that contains the left in-
equalities in (1.2) and (1.3) as special cases.

Theorem 1 Let E be a continuum in � . Then

capE ≥ (1/2)diamE · Ψ(areaE/((π/4)diam 2E)), (1.4)

where 1/Ψ(s) is a decreasing function from [0, 1] onto [1, 2] that is the inverse
function to s = p−2[β2(p) − 2p(β(p) − 1)], with 1 ≤ β(p) ≤ 2 defined by
equation (1.7), with d replaced by p.

Equality occurs in (1.4) if and only if E = a(� \ fd(� ∗)) + b for some
a, b ∈ � , a �= 0 and 1 ≤ d ≤ 2, where the function fd(z) is defined for |z| > 1
by (1.8).

2



Figure 1: Graph of Ψ(s)

The graph of Ψ is plotted in Figure 1. Figure 2 displays the shape of the
extremal continua for a = 1, b = 0 and some typical values of d.

Let s = areaE/((π/4)diam 2E). In the case s = 0, (1.4) gives Faber’s
inequality and in the case s = 1, it gives Pólya’s inequality. Combined
with the right-hand side inequality in (1.2) and the classical area-diameter
inequality 0 ≤ areaE/((π/4)diam 2E) ≤ 1, (1.4) describes the range of one
of the quantities capE, diamE, or areaE if the other two are fixed. Several
similar sharp inequalities linking three characteristics of a set are known in
geometry. But to prove such a sharp inequality is a difficult task even for
purely geometric quantities, see [JBo]. From this perspective, (1.4) might
be the first known sharp inequality for these three quantities that includes a
functional characteristic.

Since capE, diamE, and (areaE)1/2 all change linearly with respect to
scaling we can fix one of them, say capE, and then study the region of
variability of the other two. In this way, we can reformulate the problem as
finding the maximal omitted area for the class Σ of univalent functions

f(z) = z + a0(f) + a1(f)z−1 + . . . (1.5)

which are analytic in � ∗ , except for a simple pole at z = ∞. For f ∈ Σ, let
Ef = � \ f(� ∗). It is well known, as a consequence of the normalization in
(1.5), that for f ∈ Σ that 1 ≤ (1/2)diamEf ≤ 2. Therefore, for 1 ≤ d ≤ 2, we
will consider Σd = {f ∈ Σ : diamEf = 2d}. For f ∈ Σd, define Af = areaEf

3



Figure 2: Extremal continua

and A(d) = supf∈Σd
Af . It is well known that

Af = π(1 −
∞∑
n=1

n|an(f)|2)

— this relation will be often used in what follows. Theorem 1 is equivalent
to

Theorem 2 Let f ∈ Σd, 1 ≤ d ≤ 2. Then,

A(f) ≤ π[β2 − 2d(β − 1)], (1.6)

where 1 ≤ β ≤ 2 is the unique solution to the equation

d = β − (β − 1) log(β − 1). (1.7)

Equality occurs in (1.6) if and only if f(z) = eiτfd(e
−iτz) + b with τ ∈ � ,

b ∈ � , and

fd(z) = d+

∫ z

1

z−1ϕ(z; d) dz, (1.8)

where the function ϕ(z; d) = zf ′
d(z) is defined by the equation

ϕ(z; d) = A
z2 − 1

z

√
1 +Bz2 +

√
r(z)

√
B + z2 +

√
r(z)

c(1 + z2) +
√
r(z)

(1.9)
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with principal branches of the radicals and

c = β − 1 , A =
1 + c

2c
, B = 2c2 − 1 ,

r(z) = 1 + 2Bz2 + z4 .

The function ϕ maps �
∗ conformally onto the complement of the “double

anchor”

F (β, ψ) = [−iβ, iβ] ∪ {βeit :
π

2
− ψ ≤ t ≤ π

2
+ ψ}

∪{βeit :
3π

2
− ψ ≤ t ≤ 3π

2
+ ψ},

where β is defined by (1.7) and ψ = (1/2) cos−1(8β−1 − 8β−2 − 1).

The graph of the maximal omitted area A(d) = π[β2(d) − 2d(β(d) − 1)]
is shown in Figure 3.

To prove Theorem 2, we apply techniques developed in [BS], which were
based on symmetrization transformations and some elementary local varia-
tions. Section 2 contains preliminary results and necessary definitions. In
Section 3, we identify the extremal function by solving a specific bound-
ary value problem for analytic functions. Section 4 completes the proofs of
Theorems 1 and 2.

Note that some similar sharp estimates for the area of f(� ) for problems
with analytic side conditions instead of geometric constraints, as imposed in
the present paper, were found in [ASS1, ASS2] using a different method.

2 Preliminaries

First we show the existence of an extremal function and describe some simple
properties of the maximal omitted area.

Lemma 1 For every 1 ≤ d ≤ 2 there is a function f ∈ Σd such that Af =
A(d).

The maximal area A(d) is continuous and strictly decreases from π to 0
as d increases from 1 to 2.
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Figure 3: Graph of A(d)

Proof. For a fixed d, Σd is compact in the topology of uniform convergence
on compact subsets of � ∗ . Since Af is upper semi-continuous, the existence
of an extremal function follows.

Let 1 < d1 < d2 ≤ 2 and let f ∈ Σd be extremal for A(d2). Note that f
has at least one non-zero coefficient ak(f) for some k ≥ 1. The function

ft(z) = t−1f(tz) = z + a0(t)t
−1 + a1(t)t

−2z−1 + . . . , (2.1)

as well as the area Aft and diameter d(ft) = diamEft depend continuously on
t, 1 ≤ t <∞. Since ft(z) → z as t→ ∞, one can easily show that d(ft) → 2
as t→ ∞. Hence, there is t1 > 1 such that d(ft1) = 2d1. Therefore

A(d1) ≥ Aft1
= π(1 −

∞∑
n=1

nt
−2(n+1)
1 |an(f)|2) > π(1 −

∞∑
n=1

n|an(f)|2) = A(d2),

(2.2)
with strict inequality since ak(f) �= 0. Equation (2.2) proves the strict
monotonicity of A(d).

Finally, the compactness of Σd and continuity of Aft imply the continuity
of A(d). �
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Since the class Σd is invariant under the rigid motions of � , i.e. e−iθf(eiθz)+
b ∈ Σd if f ∈ Σd and θ ∈ � , b ∈ � , we may restrict ourselves to functions
f ∈ Σd such that the points w1 = d, w2 = −d belong to Ef . Thus, the
condition diamEf = |w1 − w2| = 2d will be assumed if a different condition
is not imposed explicitly.

To prove symmetry properties of an extremal continuum Ef we shall
apply Steiner symmetrization defined as follows:

The Steiner symmetrization of a compact set E w.r.t. the real axis � is
a compact set E∗ such that for every u ∈ � , E∗ ∩ l(u) = ∅ if E ∩ l(u) = ∅
and E∗ ∩ l(u) = {w = u + it : −m ≤ t ≤ m} if E ∩ l(u) �= ∅. Here
l(u) = {w = u + it : −∞ < t < ∞} and m = meas (E ∩ l(u)) denotes the
linear Lebesgue measure. Steiner symmetrization w.r.t. the imaginary or
other axis is defined similarly.

It is well known that Steiner symmetrization preserves area and dimin-
ishes diameter and logarithmic capacity [H, D].

Lemma 2 For 1 < d < 2, let f ∈ Σd be an extremal function normalized as
above. Then, Ef possesses Steiner symmetry w.r.t. the real and imaginary
axes. Moreover, the boundary of Ef , ∂Ef , consists of a Jordan rectifiable
curve Lf plus, possibly, some added segments I+ = [d0, d], I− = [−d,−d0],
0 < d0 = d0(d) ≤ d, of the real axis.

Proof. Suppose that Ef does not possess Steiner symmetry w.r.t. � . Let
E∗ be the Steiner symmetrization of Ef w.r.t. � . Note that

2d = diamEf = diamE∗ and capEf > capE∗ (2.3)

since the points ±d ∈ Ef and since E∗ is not a rigid motion of Ef (see [D]).
Let

F (z) = αz + α0 + α1z
−1 + . . . , α > 0, (2.4)

map �
∗ conformally onto Ω(E∗). The inequality in (2.3) shows that α < 1.

Let Fα = α−1F . Then, Fα ∈ Σd/α. Therefore, we have

A(d/α) ≥ AFα = πα−2(1 −
∞∑
n=1

nα−2|αn|2) ≥ π(1 −
∞∑
n=1

n|an(f)|2) = A(d).

Since d/α > d, the latter contradicts the strict monotonicity of A(d) in
Lemma 1.
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The same arguments show that Ef possesses Steiner symmetry w.r.t. the
imaginary axis.

Let L+
f = {w ∈ ∂Ef : �w > 0} and L−

f = {w ∈ ∂Ef : �w < 0}. The
Steiner symmetries of Ef w.r.t. the real and imaginary axes can be used to
show that L+

f and L−
f are rectifiable Jordan arcs; a similar argument was

used in [ASS2, Lemma 4]. Indeed, let L+ = {w ∈ L+
f : �w > 0} and let

d0 = sup{�w : w ∈ L+}, m0 = sup{�w : w ∈ L+}. The function

τ(w) = u+m0 − v, where w = u+ iv

is continuous on L+ and maps the closure L̄+ one-to-one onto the segment
{τ : 0 ≤ τ ≤ d0 + m0}. Therefore, L̄+ is Jordan. Since �w and �w are
both monotonic on L+, it follows that L̄+ is rectifiable. This implies that ∂Ef
consists of a rectifiable Jordan curve Lf plus, possibly, some added horizontal
segments [−d,−d0], [d0, d] and vertical segments [−im,−im0], [im0, im] with
0 ≤ m0 ≤ m <∞.

The presence of vertical segments, i.e., the segments [−im,−im0], [im0, im]
with m > m0 easily leads to a contradiction: shortening the vertical slits
and expanding the horizontal ones we can find a continuum Ẽ such that
area Ẽ = areaEf , cap Ẽ = capEf = 1, and diam Ẽ > diamEf that contra-
dicts the strict monotonicity property of A(d) in Lemma 1. �

Let f ∈ Σd be an extremal function for A(d). By Lemma 2, ∂f(� ∗) =
L+
f ∪ L−

f ∪ [−d,−d0] ∪ [d0, d] with 0 < d0 ≤ d. If d0 < d then there is

0 < θ0 < π/2 such that L+
f = {f(z) : z ∈ l+f }, [d0, d] = {f(z) : z ∈ l++

n },
[−d,−d0] = {f(z) : z ∈ l+−

n }, where l+f = {eiθ : θ0 < θ < π − θ0}, l++
n =

{eiθ : 0 ≤ θ ≤ θ0}, l+−
n = {eiθ : π − θ0 ≤ θ ≤ π}. The corresponding arcs in

the lower half-plane will be denoted by l−f , l−+
n , and l−−

n . The image curves

L+
f and L−

f are called the free boundary, the preimages l+f and l−f are called
the free arcs. Respectively, [d0, d], [−d,−d0] and l++

n , l+−
n , l−+

n , l−−
n are called

the non-free boundary and the non-free arcs.
To study the behavior of f ′ on the non-free arcs we shall use two lemmas

from [BS], which are limiting cases of Theorem 1 in [S2].
Let H+

τ and H−
τ be the left and right half-planes w.r.t. the vertical

line l(τ) = {w = u + iv : u = τ}. For D ⊂ � , let D+
τ = D ∩ H+

τ ,
D−
τ = D ∩ H−

τ and let D∗
τ denote the set symmetric to D w.r.t. l(τ), i.e.

D∗
τ = {w = u+ iv : 2τ − u+ iv ∈ D}.
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We say that D possesses the polarization property in the interval τ1 <
τ < τ2 if (D−

τ )∗τ ⊂ D+
τ for all τ1 < τ < τ2. Extremal configurations shown in

Figure 2 give an example of domains possessing the polarization property in
the corresponding intervals 0 < τ < d.

Lemma 3 [BS, Lemma 4] Let f ∈ Σ, D = f(� ∗), and let f map a boundary
arc {eiθ : θ1 < θ < θ2} onto a horizontal interval {w : �w = v0, τ1 < �w <
τ2}. Let D possess the polarization property in τ1 < τ < τ2. Then, |f ′(eiθ)|
strictly increases in θ1 < θ < θ2 if f(eiθ1) = τ2 + iv0 and strictly decreases if
f(eiθ1) = τ1 + iv0.

If f is extremal for A(d), the joint symmetry of Ef assures that the
polarization property of D = f(� ∗) holds in d0 < τ < d. Thus, we obtain
from Lemma 3,

Corollary 1 Let f ∈ Σd be extremal for A(d), 1 < d < 2 and suppose that
the non-free arc l++

n is not degenerate, i.e., 0 < θ0 < π/2. Then, |f ′(eiθ)|
strictly increases in 0 < θ < θ0 and π < θ < π + θ0 and strictly decreases in
π − θ0 < θ < π and 2π − θ0 < θ < 2π.

We need a similar result concerning angular polarization. Let γϕ = {w =
teiϕ, t ≥ 0} and let H+

ϕ denote the right half-plane w.r.t. the line determined
by γϕ and H−

ϕ denote the left half-plane w.r.t. the line determined by γϕ.

For D ⊂ � , let D+
ϕ = D ∩ H+

ϕ , D−
ϕ = D ∩ H−

ϕ and let D∗
ϕ denote the set

symmetric to D w.r.t. the line determined by γϕ .
We say that a domain D possesses the angular polarization property in

ϕ1 < ϕ < ϕ2 if (D−
ϕ )∗ϕ ⊂ D+

ϕ for all ϕ1 < ϕ < ϕ2. For example, domain G
depicted in Figure 4 possesses the angular polarization property in 0 < ϕ <
π/2.

Lemma 4 [BS, Lemma 5] Let g map � ∗ conformally onto D and map a
boundary arc {eiθ : θ1 < θ < θ2} onto a circular arc L = {w = ρeiϕ : ϕ1 <
ϕ < ϕ2}. Let g(∞) ∈ H+

ϕ1
∩H+

ϕ2
and let D possesses the angular polarization

property in ϕ1 < ϕ < ϕ2. Then, |g′(eiθ)| strictly increases in θ1 < θ < θ2 if
g(eiθ1) = ρeiϕ1 and strictly decreases in θ1 < θ < θ2 if g(eiθ1) = ρeiϕ2.

Remark. The domains D in Lemmas 3 and 4 possess the polarization
property for a horizontal interval and the angular polarization property w.r.t.
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rays issuing from the origin, resp. One can easily reformulate these lemmas
for arbitrary intervals and for rays issuing from arbitrary centers. For in-
stance, Lemma 4 in [BS] is formulated for vertical intervals.

The term “polarization property” comes from the proofs of Theorem 1 in
[S2] and Lemmas 4 and 5 in [BS] that use the polarization transformation.

To find a boundary condition for an extremal function f ∈ Σd on the free
arcs, we apply, in a suitable form, the local variation used in [BS]. First, we
recall the relations linking the logarithmic capacity of a continuum E with
the outer radius and reduced module of Ω(E). Let

g(w) = w + b0 + b1w
−1 + . . .

map Ω(E) conformally onto � ∗
R = � \ � R, where �R = {ζ : |ζ| < R}. The

radius R = R(E) of the omitted disk is uniquely determined and is called the
outer radius of Ω(E); it is well known that capE = R(E), see [Du, § 10.2],
[G, Ch. 7]. The quantity

m(Ω(E),∞) = − 1

2π
logR(E) = − 1

2π
log capE (2.5)

is called the reduced module of Ω(E) at w = ∞.
The variation used in [BS] and in the present paper is rather complicated.

Let Ω ⊂ � be a simply connected domain which contains ∞ such that
its boundary arcs lying in the vicinities of two of its boundary points, w1

and w2, are Jordan and rectifiable. Let ∂Ω have a tangent l at w1 and
let n1 be a unit inward normal at w1. For ε1 > 0 small enough, let c0ε1
and cε1 be open and closed crosscuts of D at the boundary point w1, i.e.
c0ε1 and cε1 are respectively the biggest open and closed arcs of Cε1(w1),
where Cr(w0) = {w : |w − w0| = r}, such that w1 + ε1n1 ∈ c0ε1 ⊂ Ω
and w1 + ε1n1 ∈ cε1 ⊂ Ω̄, respectively. Let �

+
ε1

(w1) denote the connected
component (half-disk) of � ε1 (w1) \ l that contains the point w1 + ε1n1 on
its boundary. Let c′ε1 denote the maximal open circular arc contained in the

intersection c0ε1 ∩∂�+
ε1

(w1). Let Ω̂ε1 be a connected component of Ω\� ε1(w1)
containing ∞ and let

Ωε1 = Ω̂ε1 ∪ �
+
ε1

(w1) ∪ c′ε1. (2.6)

Let I(ε1) = {w = w1− itn1 : −ε1 < t < ε1}. For 0 < ϕ1 ≤ 1/2, let M(ε1, ϕ1)
denote the open lune in � ε1 (w1) \ �+

ε1
(w1) bounded by I(ε1) and a circular
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arc γ(ε1, ϕ1) that forms angles of opening πϕ1 with the interval I(ε1) at its
end points. Let

Ω(ε1, ϕ1) = Ωε1 ∪M(ε1, ϕ1) ∪ I(ε1). (2.7)

Let g(w) = g(w; ε1, ϕ1) map Ω(ε1, ϕ1) conformally onto �
∗ such that

g(∞) = ∞, g(w2) = 1. Let 0 < ϕ2 ≤ 1/2 and ε2 > 0 be small enough. Let
U ε2,ϕ2 ⊂ � ∗ be the simply connected domain which contains ∞ and which
is bounded by the arc L(ε2) = {eiθ : ε2 ≤ |θ| ≤ π} and by the circular arc
L(ε2, ϕ2) with ends at the points eiε2 and e−iε2 that forms an angle of opening
π(1 − ϕ2) with the arc L(ε2) at the points eiε2 and e−iε2 .

The domain
Ω̃ = g−1(U ε2,ϕ2, ε1, ϕ1) (2.8)

will be called the two point variation of Ω centered at w1 and w2 with radii
ε1 and ε2 and inclinations ϕ1 and ϕ2.

The following lemma is a reformulation of Lemma 10 in [BS] for conformal
mappings f of � ∗ normalized by condition f(∞) = ∞; in [BS] this result is
formulated for conformal mappings f of the unit disk � with normalization
f(0) = 0.

Lemma 5 [BS, Lemma 10] Let w = f(z) map � ∗ conformally onto Ω defined
above such that f(∞) = ∞, f(eiθ1) = w1, f(eiθ2) = w2 and let there exist the
limits

f ′(eiθk) = lim
z→eiθk ,z∈�∗

f(z) − wk
z − eiθk

�= 0,∞ for k = 1, 2. (2.9)

Let |f ′(eiθk)| = αk, k = 1, 2. Let Ω̃(ε1, ε2, ϕ1, ϕ2) be the two point variation
of Ω defined by (2.8) with ε2 replaced by ε2/α2. Then, for fixed 0 < ϕ1 ≤ 1/2
and 0 < ϕ2 ≤ 1/2,

m(Ω̃(ε1, ε2, ϕ1, ϕ2),∞) −m(Ω,∞) =

ϕ1(2 + ϕ1)

12πα2
1(1 + ϕ1)2

ε2
1 −

ϕ2(2 − ϕ2)

12πα2
2(1 − ϕ2)2

ε2
2 + o(ε2

1) + o(ε2
2) (2.10)

and
area (� \ Ω̃(ε1, ε2, ϕ1, ϕ2)) − area (� \ Ω) =

−2πϕ1 − sin 2πϕ1

2 sin2 πϕ1

ε2
1 +

2πϕ2 − sin 2πϕ2

2 sin2 πϕ2

ε2
2 + o(ε2

1) + o(ε2
2) (2.11)

as ε1 → 0 and ε2 → 0.
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To prove uniqueness of the extremal function in Σd, we need the following
modification of Lemma 1 in [S1] where a similar result is proved for domains
with one axis of symmetry.

Lemma 6 (cf. [S1, Lemma 1]). For k = 1, 2, let Ωk ⊂ � be simply con-
nected domains which contain ∞ and which have double symmetry w.r.t. the
coordinate axes. Let there be a point ζ ∈ ∂Ω1, �ζ ≥ 0, �ζ > 0 such that the
points ζ, ζ̄, −ζ, and −ζ̄ split ∂Ω1 into four boundary arcs l+r , l−r , l+i , and l−i ,
where l+r lies in the closed right half-plane and connects ζ and ζ̄, l+i lies in
the closed upper half-plane and connects ζ and −ζ̄. Let

gk(z) = z + a1(gk)z
−1 + . . .

map � ∗ conformally onto Ωk.
If l+r ⊂ Ω2, l

+
i ⊂ � \ Ω2, then

g1(r) ≤ g2(r), |g2(ir)| ≤ |g1(ir)| (2.12)

for all r > 1. Equality can occur in (2.12) if and only if Ω1 = Ω2.

3 Boundary value problem for extremal func-

tions

In this section f will denote the extremal function in Σd with 1 < d < 2 and
D = f(� ∗).

Lemma 7 There is β > 0 such that

|f ′(eiθ)| = β for a.e. eiθ ∈ lf := l+f ∪ l−f (3.1)

and
|f ′(eiθ)| < β for all eiθ ∈ ln := � \ l̄f . (3.2)

Proof. Since ∂D = Lf ∪ I+ ∪ I− by Lemma 2, where Lf is Jordan and
rectifiable, the non-zero finite limit

f ′(ζ) = lim
z→ζ,z∈�∗

f(z) − f(ζ)

z − ζ
�= 0,∞ (3.3)
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exists for almost all ζ ∈ � . This easily follows from Theorem 6.8 in [P]
applied to the univalent function 1/f(1/z). Assume that

0 < β1 = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 <∞ (3.4)

for some eiθ1 , eiθ2 ∈ lf . Note that (3.3) and (3.4) allow us to apply the two
point variation of Lemma 5.

For positive k1, k2 such that

0 < k1 < 1 < k2 and k1β
−1
1 > k2β

−1
2 (3.5)

and for fixed ϕ > 0 small enough consider the two point variation D̃ of
D centered at w1 = f(eiθ1) and w2 = f(eiθ2) with inclinations ϕ and radii
ε1 = k1ε, ε2 = k2ε, respectively. Computing the change in the omitted area
by formula (2.11), we find

area (� \ D̃) − area (� \D) =
2πϕ− sin 2πϕ

2 sin2 πϕ
ε2(k2

2 − k2
1) + o(ε2).

Therefore,
area (� \ D̃) > area (� \D) (3.6)

for all ε > 0 small enough. Applying the variation (2.10) of Lemma 6, we get

m(D̃,∞) −m(D,∞) =
1

12π

[
ϕ(2 + ϕ)

(1 + ϕ)2

k2
1

β2
1

− ϕ(2 − ϕ)

(1 − ϕ)2

k2
2

β2
2

]
ε2 + o(ε2)

=

[
ϕ

6π

(
k2

1

β2
1

− k2
2

β2
2

)
+ o(ϕ)

]
ε2 + o(ε2), (3.7)

which together with (3.5) implies that

m(D̃,∞) > m(D,∞) (3.8)

for all ε > 0 small enough if ϕ is chosen such that the expression in the
brackets in (3.7) is positive. Let E = � \D, Ẽ = � \ D̃. Equations (3.8) and
(2.5) show that

cap Ẽ < capE. (3.9)

Since area Ẽ > areaE and diam Ẽ ≥ diamE, (3.9) contradicts the monotonic-
ity property of the function A(d) in Lemma 1.
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Assume that ln �= ∅. Then f ′(1) = f ′(−1) = 0. To prove that |f ′(eiθ)| < β
for all eiθ ∈ ln \ {±1}, we assume that β = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 with
eiθ1 ∈ lf and some eiθ2 ∈ ln \{±1}. Then applying the two point variation as
above we get (3.6) and (3.9), again contradicting the monotonicity property
of A(d). Hence, |f ′(eiθ)| ≤ β for all eiθ ∈ ln, which combined with the strict
monotonicity property of Corollary 1 leads to the strict inequality in (3.2).
�

Lemma 8 If 1 < d < 2, then ln = {eiθ : −θ0 < θ < θ0} ∪ {eiθ : π − θ0 <
θ < π+ θ0} with some 0 < θ0 = θ0(d) < π/2; f ′ is continuous on �

∗
and for

all z ∈ �
∗

|f ′(z)| ≤ |f ′(eiθ)| = β, (3.10)

where eiθ ∈ l̄f and β > 1.

Proof. Consider the function g(z) = 1/f(1/z). By Lemma 2, g maps
� onto a Jordan rectifiable domain possibly slit along two symmetric radial
segments lying on the real axis. The double symmetry of D = f(� ∗) implies
that G = g(� ) is starlike w.r.t. w = 0. Since G is rectifiable and starlike, it
follows from classical results of Lavrent’ev, see [P, p.163], that G is a Smirnov
domain (non-Jordan in general). This shows that log |g′(z)| = log |f ′(1/z)|−
2 log |zf(1/z)|, and therefore log |f ′(1/z)|, can be represented by the Poisson
integral

log |f ′(1/z)| =
1

2π

∫ 2π

0

P (r, θ − t) log |f ′(e−it)| dt (3.11)

with boundary values defined a.e. on � , see [P, p. 155]. Equation (3.11)
along with (3.1) and (3.2) shows that 1 = |f ′(∞)| ≤ β with equality only for
the function f(z) ≡ z.

If ln = ∅, then (3.11) and (3.1) show that |f ′| = β identically on � ∗ .
Therefore, f(z) ≡ z contradicting the condition d = (1/2)diam∂f(� ∗) > 1.
Hence, ln �= ∅. The latter implies that f is analytic in vicinities of the points
z = 1 and z = −1 and f ′(z) has a simple zero at z = 1, z = −1. Consider
the function h(z) = log |f ′(1/z)/(z2 − 1)|, which can be represented by the
Poisson integral

h(z) =
1

2π

∫ 2π

0

P (r, θ − t) log |f ′(eit)/(e2it − 1)| dt. (3.12)

14



Equation (3.12) and the previous analysis show that h is a bounded harmonic
function on � . Let h1 be a bounded harmonic function on � with boundary
values log(β/|z2 − 1|) on lf and h(z) on ln. Then h1 − h has nontangential
limit 0 a.e. on � . Therefore, h1 − h ≡ 0 in � . Hence, |f ′| = β everywhere
on lf .

Since D possesses the double symmetry we need to show only that f ′

is continuous at eiθ0. By the symmetry principle, f can be continued ana-
lytically through ln and f ′ can be continued analytically through lf . This
implies that f can be considered as a function analytic in a slit disk ∆0 =
� ε(e

iθ0) \ [(1 − ε)eiθ0 , eiθ0 ] with ε > 0 small enough.
Using the Julia-Wolff lemma, see [P, Proposition 4.13], boundedness of

f ′, and well-known properties of the angular derivatives, see [P, Propositions
4.7, 4.9], one can prove that f ′ has a finite limit f ′(eiθ0), |f ′(eiθ0)| = β, along
any path in �

∗
ending at eiθ0 . The details of this proof are similar to the

arguments in Lemma 13 in [BS]. �

Lemma 9 Let f be extremal in Σd for 1 < d < 2 and let ϕ(z) = zf ′(z).
Then ϕ maps � ∗ univalently onto the complement Ω(β, ψ) = � \ F (β, ψ) of
the double anchor F (β, ψ) defined in Theorem 2 where β is defined by (1.7)
and ψ = (1/2) cos−1(8β−1 − 8β−2 − 1).

Proof. 1) Let g(z) = f ′(
√
z). Since g(z̄) = g(z), the symmetry principle

implies that g is analytic in �
∗ . We will show that g is univalent there.

By Corollary 1, |g(eiθ)| = |f ′(eiθ/2)| strictly increases from 0 to β as θ runs
from 0 to 2θ0. Since arg g(eiθ) = arg f ′(eiθ/2) = (π − θ)/2 strictly decreases
from π/2 to ϕ0 = π/2 − θ0 as θ runs from 0 to 2θ0, it follows that g maps
the arc {eiθ : 0 ≤ θ ≤ 2θ0} one-to-one onto an analytic Jordan arc δ1 lying
in the domain U+

β = {w ∈ � β : �w > 0,�w > 0} and connecting the points

w = 0 and w = βeiϕ0 = f ′(eiθ0).
Since f(� ∗) is starlike w.r.t. w = 0,

�e
iθf ′(eiθ)
f(eiθ)

≥ 0

for 0 ≤ θ ≤ 2π. Since f(� ∗) is symmetric w.r.t. the coordinate axes, the
latter inequality shows that −π ≤ arg f ′(eiθ) ≤ π − θ0 for 0 ≤ θ ≤ θ0. This
combined with (3.10) implies that g maps the arc {eiθ : 2θ0 ≤ θ ≤ π} one-
to-one onto the circular arc δ2 = {βeiϕ : 0 ≤ ϕ ≤ ϕ0} such that g(e2iθ0) =

15



Figure 4: Domain G for β = 1.7

βeiϕ0 , g(−1) = β. By symmetry, g maps the arc {eiθ : −2θ0 ≤ θ ≤ 0}
onto δ̄1 = {w : w̄ ∈ δ1} and the arc {eiθ : π ≤ θ ≤ 2π − 2θ0} onto
δ̄2 = {w : w̄ ∈ δ2}. Thus, g maps the unit circle � one-to-one onto a closed
Jordan arc δ composed by δ1, δ2, δ̄2, and δ̄1. Since g(∞) = f ′(∞) = 1 the
argument principle implies that g maps � ∗ conformally and one-to-one onto
a simply connected domain G which contains 1 and which is bounded by δ.
The domain G for β = 1.7 is plotted in Figure 4.

The above mentioned properties of δ1 show that G is circularly symmetric
w.r.t. the positive real axis. Therefore by Lemma 4, |g′(eiθ)| = |f ′′(eiθ/2)|
strictly decreases in 2θ0 < θ < π.

2) Considering boundary values of ϕ we have

�ϕ(eiθ) = �eiθf ′(eiθ) = 0 for 0 ≤ θ ≤ θ0

since �f(eiθ) = 0 for such θ. Since �ϕ(eiθ) = |f ′(eiθ)| strictly increases
in 0 ≤ θ ≤ θ0, ϕ maps l++

n continuously and one-to-one onto the vertical
segment {w : �w = 0, 0 ≤ �w ≤ β}.

For θ0 ≤ θ ≤ π/2, |ϕ(eiθ)| = β and

∂

∂θ
argϕ(eiθ) =

∂

∂θ
� log(eiθf ′(eiθ)) = 1 +

eiθf ′′(eiθ)
f ′(eiθ)

= 1 − β−1|f ′′(eiθ)|,
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since eiθf ′′(eiθ)/f ′(eiθ) is real non-positive for θ0 ≤ θ ≤ π/2.

Since |f ′′(eiθ)| strictly decreases in θ0 ≤ θ ≤ π/2 it follows that ∂
∂θ

argϕ(eiθ)
changes its sign at most once in the interval θ0 < θ < π/2.

We have shown in 1) that arg f ′(eiθ) decreases from π/2 − θ0 to 0 when
θ runs from θ0 to π/2. Since argϕ(eiθ0) = π/2, the latter implies that

0 < θ0 < argϕ(eiθ) = θ + arg f ′(eiθ) < π − θ0 (3.13)

for θ0 < θ < π/2.

We claim that there is θ1, θ0 < θ1 < π/2 such that

∂
∂θ

argϕ(eiθ) < 0 if θ0 < θ < θ1,
∂
∂θ

argϕ(eiθ) > 0 if θ1 < θ < π/2.
(3.14)

Suppose to the contrary that ∂
∂θ

argϕ(eiθ) ≤ 0 for all θ0 < θ < π/2. Then,
we would have that argϕ(eiθ) monotonically decreases over θ0 < θ < π/2.
Since ϕ(eiθ0) = ϕ(i) = iβ, we would have

∆ argϕ(eiθ)
∣∣∣π/2θ0

= −2πk for some k ∈ �

contradicting (3.13). The assumption ∂
∂θ

argϕ(eiθ) ≥ 0 for all θ0 < θ < π/2
leads to the same contradiction. Since |f ′′(eiθ)| strictly decreases in θ0 ≤ θ ≤
π/2, the claim follows.

Let ψ = argϕ(eiθ1). The previous analysis shows that θ0 < ψ < π/2
and ϕ maps each of the arcs {eiθ : θ0 ≤ θ ≤ θ1} and {eiθ : θ1 ≤ θ ≤ π/2}
continuously and one-to-one onto the arc {βeit : ψ ≤ t ≤ π/2} such that
ϕ(eiθ1) = βeiψ. The symmetry principle now yields that ϕ maps the unit
circle � continuously and one-to-one in the sense of boundary correspondence
onto the boundary of the domain Ω(β, ψ). Hence by the argument principle,
ϕ maps � ∗ conformally and univalently onto Ω(β, ψ)

The normalization f ′(∞) = 1 leads after some work left to the interested
readers to the relation ψ = (1/2) cos−1(8β−1 − 8β−2 − 1). �

4 Proofs of Theorems 1 and 2

To prove uniqueness of the extremal function in Σd, we assume that for some
fixed d, 1 < d < 2, there are distinct extremals f1 and f2. By Lemma 9,
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zf ′
k(z) = gβk

(z) for some 1 < β1 < 2, 1 < β2 < 2, where gβk
maps � ∗

conformally onto the domain Ω(βk) = � \ F (βk, ψ(βk)). To be explicit,
assume that β1 < β2. The domains Ω(β1) and Ω(β2) satisfy the conditions
of Lemma 6. Therefore,

gβ1(r) > gβ2(r) (4.1)

for all r > 1.
Since fk(�

∗) is doubly symmetric w.r.t. the real and imaginary axes, it
follows that a0(fk) = 0 for k = 1, 2. Hence, it follows from the normalization
in (1.5) that

lim
R→∞

(f1(R) − f2(R)) = 0. (4.2)

On the other hand, since f1(1) = f2(1) = d, we have

f1(R) − f2(R) =

∫ R

1

t−1(gβ1(t) − gβ1(t)) dt

and (4.1) implies that the integrand is positive and hence, that f1(R)−f2(R)
is a (positive) increasing function of R, which contradicts (4.2).

Let fd denote the unique extremal function in Σd. To find fd explicitly,
we represent ϕ(z; d) = zf ′

d(z) as

ϕ(z; d) = (Fd−2(z−2))−1/2,

where Fp(ζ) = ζ+a2(Fp)ζ
2+. . ., 1/4 ≤ p ≤ 1, is the univalent function in the

standard class S that maps the unit disk � onto the domain � \ ((−∞,−p]∪
{peiτ : |τ − π| ≤ α}) with α = cos−1(8

√
p − 8p − 1). It is well known

that Fp is extremal in a number of problems, for instance in the problem on
max |a2(f)| studied by E. Netanyahu [N] and T. Suffridge [S], on the subclass
of functions f ∈ S that cover the disk � p . Using an explicit expression for
Fp, see for example, [S], we get (1.9) and after an integration (1.7).

The integral in (1.8) can be evaluated in terms of elementary functions.
We leave to the interested readers to check (one can use “Mathematica” or
“Maple”) that fd(1) coincides with the right-hand side in (1.7), which in this
case is equivalent to the equality fd(1) = d. Since for each 1 ≤ d ≤ 2 the
extremal function is unique in Σd, (1.7) has a unique solution β = β(d) on
the interval 1 ≤ β ≤ 2; this also follows easily from the monotonicity of the
right-hand side of (1.7).
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To evaluate the maximal omitted area A(d) = Area (Efd
), we apply a

standard line integral formula and the fact that � (w̄ dw) = 0 on the non-
free boundary. We have

A(d) =
1

2
�

∫
∂Efd

w̄ dw =
1

2
�

∫
Lfd

w̄ dw =
1

2
�

∫
lfd

fd(eiθ)e
iθf ′

d(e
iθ) dθ.

Since |f ′
d|2 = β2 on lfd

, we obtain

A(d) =
β2

2
� lim

ε→+0

{∫ π−ε

ε

fd(e
iθ)

eiθf ′
d(e

iθ)
dθ +

∫ 2π−ε

π+ε

fd(e
iθ)

eiθf ′
d(e

iθ)
dθ

}
=

=
β2

2
�

{∫
�

fd(z)

z2f ′
d(z)

dz − πiRes

[
fd(z)

z2f ′
d(z)

, 1

]
− πiRes

[
fd(z)

z2f ′
d(z)

,−1

]}
,

where
∫
�
fd/(z

2f ′
d) dz is understood as the Cauchy principal value. The func-

tion fd/(z
2f ′
d) has simple poles at z = 1 and z = −1. Computing the integral

and residues, we obtain

A(d) = π[β2 − 2d(β − 1)],

which implies (1.6). This finishes the proof of Theorem 2.

To deduce (1.4), we write (1.6) in an invariant form:

areaE

(π/4)diam 2E
≤ p−2[β2(p) − 2p(β(p) − 1)] (4.3)

with p = diamE/(2capE), where 1 ≤ β(p) ≤ 2 is defined by (1.7) with d
replaced by p. Since the maximal omitted area A(d) strictly decreases, the
expression in the brackets in (4.3) decreases and therefore the right-hand
side of (4.3) itself decreases from 1 to 0 when p runs from 1 to 2. Therefore
there is a function p = Ψ1(s) inverse to s = p−2[β(p)2 − 2p(β(p) − 1)].
Let Ψ(s) = 1/Ψ1(s). Since the inverse Ψ1 is decreasing, (4.3) leads to the
inequality

p ≤ Ψ1(areaE/((π/4)diam 2E),

which is equivalent to (1.4) with equality only for the continua described in
Theorem 1.
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