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ABSTRACT. According to Efron & Hastie (2016):
“Optimality theories — statements of best possible results — are marks of
maturity in applied mathematics. Classical statistics achieved two such the-
ories: for unbiased or asymptotically unbiased estimation, and for hypothesis
testing.”
This course covers the details of this optimality story. You already know the basics
from your introductory mathematical statistics course: it is possible to find optimal
(uniformly smallest variance) estimators if one restricts attention to the class of unbiased
estimators. For finite samples these are the UMVUEs, and for infinte samples the
UMVUEs are MLEs (maximum likelihood estimators). But there are other forms of
optimality (if we do not restrict ourselves to the unbiased class), leading to:
¢ MREs: minimum risk equivariant estimators, minimize risk under the principle
of equivariance (invariance under location-scale transforms);
e Bayes estimators: minimize the Bayes risk, an integrated risk weighted by the
prior; and
e minimax estimators minimize the mazimum risk.
The equivalent optimal hypothesis tests are uniformly most powerful (UMP) and UMP
unbiased (UMPU).

An important sobering message is that this optimal inference is infeasible in most
practical applications, and so one usually settles for the sub-optimal and “automatic”
MLE, and accompanying Likelihood Ratio, Wald, or Score test. All the details left out
in earlier courses (probability measure-theoretic and otherwise) are covered here.

The term classical statistics refers to the 20th century dominant theme whereby
the number of parameters to estimate is smaller than the available sample size (p < n).
The 21st century bigdata era has reversed this situation, but at the moment there is no
comparable optimality theory when p > n.... The course will bring you to this frontier
and provide you with the essential tools and knowledge to go beyond it.
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CHAPTER 1

Preliminaries

1.1. Conditional Expectation

Definition. Let (X, A, P) be a probability space. If X € L'(A, P) and G is a sub-o-field
of A, then E(X|G) is a random variable such that

(i) E(X]|G) € G (i.e. is G measurable)
(i) E(IeX) = E(IcE(X|G)), YVG € G

Construction. For X > 0, u(G) = E(IgX) is a measure on G and P(G) = 0 =
u(G) = 0, so by the Radon-Nikodym theorem there exists a G-measurable function
E(X|G) such that u(G) = [, E(X|G)dP, i.e.(ii) is satisfied. This shows the existence of
E(XT|G) and E(X~|G). Then we define F(X|G) = E(X1|G) — E(X|G).

REMARK 1.1.1. (ii) generalizes to E(YX) = E(YE(X|G)) VY € G such that
ElY X| < .
The conditional probability of A given G is defined for all A € A as P(A|G) = E(14|G).

REMARK 1.1.2. If X € L?(A, P), then E(X|G) is the orthogonal projection in L?(A, P)
of X onto the closed linear subspace L?(G, P) of L?(A, P) since

(i) E(X|G) € L*(G, P) and
(i) BE(Y(X — E(X|G))) =0, VY € L*G, P).

Conditioning on a Statistic

Let X be a r.v. defined on (X, A, P) with E|X| < oo and let T be a measurable function
(not necessarily real-valued) from (X, .A) into (T, F).

(X, A,P)S (T, F,PT)

Such a T is called a statistic (and is not necessarily real-valued). The o-field of subsets
of X induced by T is

o(T)={T"'S, Se F} =T"'F
DEFINITION 1.1.3. E(X|T) = E(X|o(T))
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Recall that a real-valued function f on X is o(T) measurable < f = go T for some
F-measurable g on T, i.e. f(z) = g(T(z)) as shown below.

x 725 R

This implies that E(X|T) is expressible as E(X|T') = h(T) for some function h € F

which is unique a.e. PT.
T

X > T
DEFINITION 1.1.4. E(X|t) = h(t)

h

>y R

EXAMPLE 1.1.5. Suppose (X,T') has probability density p(x,t) w.r.t. Lebesgue mea-
sure on R? and E|X| < oo. Then E(X|o(T)) = W(T) where h(t) = E(X|T = t) =

x UCt dx
%Ip wso(t), a.s. PT.

PROOF

(i) R.S. is Borel measurable in ¢ (by Fubini)
(i) Geo(T)= G =T 'FforsomeF € F = Ig = Ip(T)

- BUGE(X|o(T)) = E(IoX) = / [oX dP

— //xlp (z,t) dedt = /IF(t)h(t)pT(t) dt

= WT)] = E[lgh(T)]

Properties of Conditional Expectation

If T is a statistic, X is the identity function on X and f,, f, g are integrable, then

(i) Elaf(X) +bg(X)|T] = aE[f(X)|T] + bE[g(X)|T] a.s.
i) a< f(X)<b as.=a<E[f(X)|T]<b a.s.
(i) |fu] < g, fulx) = f(2) as. = E[fu(X)[T] = E[f(X)[T] a.s.
(iv) E[E(f(X)[T)] = Ef(X).
v) If E|R(T)f(X)| < oo, then E[A(T)f(X)|T] = h(T)E[f(X)|T] a.s.
(vi) If G; and G, are sub-o-fields of G with Gy C Gy, then E[E(X|G)|Gs] = E(X|Gs).
1.2. Sufficiency
Set up

X: random observable quantity (the identity function on (X, A, P))
X': sample space, the set of possible values of X
A: o-algebra of subsets of X
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P: {Py, 0 € Q} is a family of probability measures on A (distributions of X)
T: X — T is an A/F measurable function and 7' (X) is called a statistic.

probability space (X, A, P) X5 sample space (X, A,P) SN (T, F,PT)

We adopt this notation because sometimes we wish to talk about T(X(:)) the random
variable and sometimes about T'(X (z)) = T'(x), a particular element of T. We shall also
use the notation P(A|T(z)) for P(A|T = T(x)) and P(A|T) for the random variable
P(A|IT(:)) on X.

DEFINITION 1.2.1. The statistic T is sufficient for 6(or P) iff the conditional distribution
of X given T' = t is independent of 6 for all ¢, i.e. there exists an F measurable P (A|T = )
such that P (A|T =t) = Py (A|T =t) a.s. P} for all A€ A and all § € Q.

EXAMPLE 1.2.2.

X = (Xy,...,X,)iid with pdf fy(z) w.r.t.dz

P = Py(dxy,...,dx,) = fo(x1) - folx,) dxy - - - day,

T(X) = (Xay,.--»X@m) where X(;is thei" order statistic.
The probability mass function of X given T' =1 is

O, (T (1)) * ++ 01, (T(my)
n!

X|T=t
pp T (xlt) =

i.e. it assigns point mass % to each = such that zyy) = t1,---,24) = t,. This is

independent of 6, indicating that T contains all the information about 6 contained in the
sample.

The Factorization Criterion

DEFINITION 1.2.3. A family of probability measure’s P = {Py: 0 € Q} is equivalent to
a p.am. A if
AMA) =0« P(A) =0 Vbe.

We also say that P is dominated by a o-finite measure p on (X, A) if

Py < p for all 6 € Q.

It is clear that equivalence to A\ implies domination by .

THEOREM 1.2.4. Let P be dominated by a p.m. \ where

)\:icini (6220,201:1)
=0

Then the statistic T (with range (T,F)) is sufficient for P <= there exists an F-
measurable function gg(-) such that

dPy(x) = go (T'(x)) dX\(z) VO € Q.
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PROOF. (=) Suppose T is sufficient for P. Then
By(A[T(x)) = P(A|T(x)) V0.

Throughout this part of the proof X will denote the indicator function of a subset of X.
The preceding equality then implies that

Ey(X|T)=EX|T) VX eA, V6.

Hence for all 0 € Q, X € A, G € o(T), we have

Ey(IgE(X|T)) = Eg(Ee(IcX|T)) = E¢(1cX).
Set 6 = 6;, multiply by ¢; and sum over i =0,1,2,..., to get

E\(IGE(X|T)) = Ex(IcX) VX € A, VG € o(T).

This implies that E(X|T) = Ex(X|T) VX € A, and hence

Ey(X|T)=EX|T)=E\X|T) VX €A, V6.
Now define go(7'(-)) to be the Radon-Nikodym derivative of Py with respect to A, with
both regarded as measures on o(7"). We know this exists since A dominates every F.
We also know it is o(7") measurable, so it can be written in the form go(7'(+)), and we
know that Ep(X) = E\(ge(T)X) for all X € o(T). We need to establish however that
this last relation holds for all X € A. We do this as follows.

XeAd= By(X) = ElE(X|T)]

= Exgo(T)E(X|T)]
= E\[E(go(T)X|T)]
= Ex\[E(g0(T)X|T)]
= Ex[gs(T)X]
This shows that go(7'(z)) = %(x) when P and A\ are regarded as measures on A.

(«<=) Suppose that for each 0, % (z) = go(T'(x)) for some go. We shall then show that

the conditional probability Py(A|t) is a version of Py(Alt) V6.
AcA Geoll) = / L dPy - / Py(AIT) dP,
a a

:L%MHMﬂw
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and

/G[AdPQZ/GIAgg(T) d\
Z/GEA[[Age(T)’T] dA

/EA[IA|T]99<T)
= Pp(A|T)ge(T) = Ex(1a]T)ge(T) a.s. A

and hence a.s. Py V0. Also go(T) # 0, a.s. Py, since dPy = go(T) dX. Hence Py(A|T) =
E\(IA|T) = P\(A|T) a.s. Py and the R.S. is independent of 6. O]

THEOREM 1.2.5. (Theorem A.4.2 in appendiz of TSH) If P = {Py, 6 € Q} is dominated
by a o-finite measure p, then it is equivalent to X = Y ¢; Py, for some countable
subcollection Py, € P, i =0,1,2,..., with¢; >0 and > ¢; = 1.

PROOF. p is o—finite, = JA, € A with Ay, A, ... disjoint, and UA; = X such that
0<pu(A) <oo,i=1,2,.... Set

Then, p* is a probability measure equ1valent to p. Hence we can assume without loss of
generality that the dominating measure p is a probability measure Let

dPy
Jo = m
and set
So ={x: fo(x) > 0}
Then
(1.2.1) Py(A) = Po(AN Sp) =0 iff (AN Sp) =0.

(Since Py < p and since (AN Sy) >0, fo > 0on ANSy = Py(ANSy) >0.) A set
A€ Ais a kernel if A C Sy for some #; a finite or countable union of kernels is called a
chain. Set
a= sup u(C)
chainsc

Then a = p(C) for some chain C' = U, A, A, C Sp,. (since 3{C,,}such that u(C,) T «
and for this sequence pu(UC,) = a.)

It follows from the following Lemma that P is dominated by A(-) = >_°° . ;L P, (). Since

n=1 21
MA) =0 = Py, (A)=0Vn
= Py(A) =0V (by the Lemma),

it is obvious that
Py(A)=0V0= \A) =
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Hence P is equivalent to A\(-) = Y>> L Py (+). O

n=1 2n

LEMMA 1.2.6. If {0,,} is the sequence used in the construction of C, then {Py, 0 € Q} is
dominated by {P,, n =1,2,...}, i.e.

PROOF.
Py, (A)=0VYn = pu(ANS,)=0VVn(byl.2.1)
= (CEYS) (ANC) =0
= B<WP(ANC)=0V0
If Py(A) > 0 for some 6 then, since Py(A) = Py(ANC) + Py(A NC°),
Py(ANCY) =FB(ANC NSy >0
=ANC°N Y is a kernel disjoint from C
=CU(ANC°N ) is a chain with u > «a, (Fp(A) > 0= u(A) > 0)
contradicting the definition of «.
Hence, Py(A) =0 V6. O
THEOREM 1.2.7. The Factorization Theorem
Let p be a o-finite measure which dominates P = {Py: 0 € Q} and let
dPy
= En
Then the statistic T s sufficient for P if and only if there exists a non negative JF-
measurable function g : T — R and an A-measurable function h: X — R such that

(1.2.2) po () = go (T (x))h(x) a.e. pu.

Do

PROOF. By theorem 1.2.5, P is equivalent to
A= Zcini, where ¢; > 0, Zci =1.

If T is sufficient for P,

APy (z) _ dPy(z) dA(z)

(r) @) dal)

= g9 (T (z)) h(x) by theorem 1.2.4.

po(z) =

On the other hand, if equation (1.2.2) holds,

@) = Y dPu@) = Y cpu(a) dula)
=Yg, @)k @) du ()

(1.2.3) = K(T(x))h(x)du(zx).
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Thus,
APy (x) = py(z) du(z) by the definition of py ()
go (T (x)) h () .
= d\ (z) by equations (1.2.2) and (1.2.3)
K (T (x)) h(x)
= g9 (T (z)) d\(x) where gy (T (z)) :==0if K (T (x)) = 0.
Hence T is sufficient for P by theorem 1.2.4. O

REMARK 1.2.8. If fy () is the density of X with respect to Lebesgue measure then 7 is
sufficient for P iff

where h is independent of 6.

EXAMPLE 1.2.9. Let X1, X5,..., X, beiid N (u,0?), u € R, ¢ > 0, and write X =
(X1, Xo,+ -+, X,). A o-finite dominating measure on B" is Lebesgue measure with

1 —1 n ,LL TLILLQ
= Guo? (Z mz,Z.ﬁEf) .

Therefore T (X) = (3 X;, > X}?) is sufficient for P = {P, ,2}.

REMARK 1.2.10. T (X) = (X, 5?) is also sufficient for P = {P, ,2}, since

9,02 (Zazl,z ) = )10 (z,5%)

T and T™ are equivalent in the following sense.

DEFINITION 1.2.11. Two statistics 7' and S are equivalent if they induce the same o-
algebra up to P-null sets. i.e. if there exists a P-null set N and functions f and g such
that

T (z)=f(S(x)) and  S(x)=g(T(z)) for all z € N
EXAMPLE 1.2.12. Let X,...,X,, beiid U(0,0), # > 0 and X = (Xq,...,X,).

p@(x) = QHH[[OOO [( oo@](xz)

1
= gl (@)oo (@@m)

= go(r(m)h(2)
= T(X) = X(is sufficient for 6.
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EXAMPLE 1.2.13. X,..., X, iid N(0,0?%), Q = {0?: 0% > 0}. Define

TW(X) = (X1,....X,)
T(X) = (Xf,..., 2)
T3(X) = (XP+-+ X7, X2+ +X7)
Ty(X) = X+ ~--+X§
1 SN,
po(z) = mexp(—@;){z‘)

Each T;(X) is sufficient. However o(Ty) C o(13) C o(13) C o(Th).
(since functions of Ty are functions of T3, functions of T3 are functions of T, and functions
of T, are functions of 7}.)

REMARK 1.2.14. If T is sufficient for # and 7' = H (S) where S is some statistic, then S
is also sufficient since

po () = go (T () h(x) = go(H (S (x)) b ()

Since o (T) = ST H 1By € S~'Bs (X, A) 2 (S,Bs) 2 (T, By)), T provides a greater
reduction of the data than S, strictly greater unless H is one to one, in which case S and
T are equivalent.

DEFINITION 1.2.15. T is a minimal sufficient statistic, if for any sufficient statistic .S,
there exists a measurable function H such that

T =H(S5) a.s. P.

THEOREM 1.2.16. If P is dominated by a o-finite measure p, then the statistic U is
sufficient iff for every fived 0 and 0y, the ratio of the densilies py and py, with respect to
1, defined to be 1 when both densities are zero, satisfies

po ()

=) = fo.0, (U (z)) a.s. P for some measurable fygq,.
Do, (T

PrROOF. HW problem (TPE Ch 1 Problem 6.6). O

THEOREM 1.2.17. Let P be a finite family with densities {pop1,...,pr}, all having the
same support (i.e. S ={x: p; (x) > 0} is independent of i). Then

@) m@) )
Tlo) = <p0 @ @ m <x>>

is minimal sufficient. (Also true for a countable collection of densities with no change in
the proof.)

PROOF. First T is sufficient by theorem (1.2.16) since % is a function of T' () for
J

all i and j (need common support here.) If U is a sufficient statistic then by theorem
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(1.2.16),
;’ 0((?) is a function of U for each 7
= T is a function of U
= T is minimal sufficient.

O

REMARK 1.2.18. The theorem 1.2.17 extends to uncountable collections under further
conditions. It also extends to countable collections without common support (Prob. 1.6.11).

THEOREM 1.2.19. Let P be a family with common support and suppose Py C P. If T is
minimal sufficient for Py and sufficient for P, then T is minimal sufficient for P.

PROOF.
U is sufficient for P = U is sufficient for Py by Definition 1.2.1.

T is minimal sufficient for Py = T'(z) = H(U(x)) a.s. Po.
But since P has common support, T'(x) = H(U(x)) a.s. P.

Note the following points.

(1) Minimal sufficient statistics for uncountable families P can often be obtained by
combining the above theorems.

(2) Minimal sufficient statistics exist under weak assumptions (but not always). In
particular they exist if (X, A) = (R",B") and P is dominated by a o-finite
measure.

(3) A generalization of the above results for establishing minimality, which accom-
modates uncountable families without common support, is Theorem 1.2.20.

THEOREM 1.2.20. Let P = {pp(z) : 0 € O} be a family of densities dominated by a
o-finite measure. If there ezists a measurable function T : X — T such that T'(x) = T(y)
if and only if y € D(x), where

D(x) ={y € X : pp(y) = po(x)h(x,y), YO and some h(x,y) > 0},

then T(X) is a minimal sufficient statistic.

PROOF. Schervish (1995), Theorem 2.29. O
EXAMPLE 1.2.21. Py : (Xy,...,X,,) itd N(0,1), 0 € {6y,6,}.
P :(Xy,...,X,) tid N(0,1), §€R.
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2 = o3[ T
e L[]

This is a function of Z, hence X is minimal sufficient for Py by Theorem 1.2.17. Since X
is sufficient for P (by the factorization theorem), X is minimal sufficient for P.
EXAMPLE 1.2.22. P :(Xy,...,X,) id U(0,0), 6 >0.
To show that X, is minimal sufficient via Theorem 1.2.20, suppose that
po(x) _ 0 oo (m) _ Loo(rm)
po(y) O oo(ym) Lo (Ym)

This is true if and only if x(,) = y(»), in which case h(z,y) =1 and D(z) = {y : yn) =
T(n)}, whence T = X, is minimal sufficient.

= h(z,y), V0.

EXAMPLE 1.2.23. Logistic

We'll show the order statistics are minimal sufficient via Theorems 1.2.17 and 1.2.19 (but
this could also be be accomplished via Theorem 1.2.20).

P (Xy,...,X,) iid L(0,1), 6€R.
Po : (Xi,...,X,) iid L(6,1), 6€{0,64,...,0,}.
exp [— > (z; — 0)]

T, {1+ exp [=(ai — O]}
so T = (T1(X),...,T,(X)) is minimal sufficient,

po(z) =

where

Ti(z) = _ H (1+e )2

(1 + e (w—0:))2°
We will show that T(X) is equwalent to (X(l), ..., X)), by showing that
T(z)=T(y) & ra) =Yy,  Tm) = Yn)-

PROOF. (<) Obvious from the expression for T;(x).
(=) Suppose that T;(z) = T;(y) fori=1,2,...,n
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where u; = ™%, v; = e % and w; = €. Here we have two polynomials in w of degree

n which are equal for n + 1 distinct values, 1,wy,...,w,, of w and hence for all w.
w=0=[Ja+uw) =]+
j=1 j=1
" H(l + ujw) = H(l + vw) Yw
j=1 j=1

.. the zero sets of both these polynomials are the same

.z and y have the same order statistics.

By theorem 1.2.17, the order statistics are therefore minimal sufficient for Py. They are
also sufficient for P, so by theorem 1.2.19, the order statistics are minimal sufficient for
P. There is not much reduction possible here! This is fairly typical of location families,
the normal, uniform and exponential distributions providing happy exceptions. 0

Ancillarity

DEFINITION 1.2.24. A statistic V is said to be ancillary for P if the distribution, P,, of
V' does not depend on 6. 1t is called first order ancillary if EyV is independent of 6.

EXAMPLE 1.2.25. In Example 1.2.23, X(5) — X(y) is ancillary since Y; = X; -0, ..., Y, =
X, — 6 are iid Py (the standard member of the family with § = 0) and X)) — X4y =
Yio) — Y.
EXAMPLE 1.2.26.

P (Xy,...,X,) 1id N(0,1), 0 € R.

5% = Z(Xl — X)? is ancillary
since
SP=Y(Y;-Y)?  whereY;=X; -0, i=1,2,. .. areiid N(0,1).

REMARK 1.2.27. Ancillary statistics by themselves contain no information about 6, how-
ever minimal sufficient statistics may contain ancillary components. For example, in
1.2.23, T = (X(l), ce ,X(n)) is equivalent to T = (X(l),X(g) — X(l), cee ,X(n) — X(l)),
whose last (n — 1) components are ancillary. You can’t drop them as X(;) is not even
sufficient.

Complete Statistic

A sufficient statistic should bring about the best reduction of the data if it contains as
little ancillary material as possible. This suggests requiring that no non-constant function
of T" be ancillary, or not even first order ancillary, i.e. that

Eof (T) =cforall 8 € Q = f(T)=cas. P
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or equivalently that

Eof (T)=0forall § € Q = f(T)=0as. P.
DEFINITION 1.2.28. A statistic 1" is complete if
(1.2.4) Eof (T) =0 for all € Q = f(T)=0as. P

T is said to be boundedly complete if equation (1.2.4) holds for all bounded measurable
functions f.

Since complete sufficient statistics are intended to give a good reduction of the data, it is
not unreasonable to expect them to be minimal. We shall prove a slightly weaker result.

THEOREM 1.2.29. Let U be a complete sufficient statistic. If there exists a minimal
sufficient statistic, then U 1s minimal sufficient.

PROOF. Let T be a minimal sufficient statistic and let 1) be a bounded measurable
function. We will show that

Y(U) € o(T) by showing that E(¢Y(U)|T) =¢(U) a.s.
Now
E((U)|T) = g(U) for some measurable g since T' is minimal and U is sufficient.

Let h(U) = E((U)|T) — (U), then Eph(U) =0 VO so h(U) = 0 a.s. P since U is
complete. Hence ¢(U) = E(¢(U)|T) € o(T). Hence U-measurable bounded functions
are T-measurable, i.e. o(U) C o(T), i.e. U is minimal sufficient. O

REMARK 1.2.30.

(1) If P is dominated by a o-finite measure and (X', A) = (R", B"), the existence of
a minimal sufficient statistic does not need to be assumed.
(2) A minimal sufficient statistic is not necessarily complete. See the next example.

ExamMPLE 1.2.31.
P = {N(G,&z), 6 >0}

1 _1(z-0)? 1
2 92

pg(l’) = 0\/%6 = 6)\/%

The single observation X is minimal sufficient but not complete since
Eoll0,00)(X) = ®(1)] = Pp(X >0) —®(1) =0 V6
however Py(/(g,00)(X) — ®(1) =0) = 0 V6.

3G

THEOREM 1.2.32. (Basu’s theorem) If T is complete and sufficient for P, then any
ancillary statistic is independent of T
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PROOF. If S is ancillary, then Py(S € B) = pp, independent of 6.
Sufficiency of T'= By(S € B|T) = h(T'), independent of 6.

- Ey(W(T) —pp) =0
=h(T) =pp a.s. P by completeness
=S is independent of T’

1.3. Exponential Families.

DEFINITION 1.3.1. A family of probability measure’s {F : 6 € Q} is said to be an s-
parameter exponential family if there exists a o-finite measure p such that

o (2)

_dby(z) _ :
= d:(x) = exp (21: n; (0)T; (x) — B (9)) h(z)),

where 7;,T; and B are real-valued.

REMARK 1.3.2.

(1) Py, 6 € Q are equivalent (since {x: pg(x) > 0} is independent of 6).
(2) The factorization theorem implies that T' = (71, -+, T}) is sufficient.
(3) If we observe X, ..., X, iid with marginal distributions Py then » 7, T (X;)
is sufficient for 0 .
THEOREM 1.3.3. If {1,m,...,ns} is LI, then T = (T,...,Ts) is minimal sufficient.
(Linear independence of {1,my,...,ns} means cym(0) + -+ 4+ cns(0) +d =00 = ¢, =
- = ¢, =d = 0. Equivalently we can say that {n;} is affinely independent or AT

since the set of points {(m(0),...,ns(0)),0 € Q} then lie in a proper affine subspace of
R5.)

PRrOOF. Fix 0, € €2 and consider

Py, polw) _ -
B, = o @y = S {B) = BO)}exp {;m (6) —m:(60)) E(x)} .

If {1,m,...,ns} is LI then so is {1,m1 — 1 (6p),...,ns — ns(6o)}

(1.3.1)

Set S = {(m(0) — m(0),...,ns(0) —ns(6)), 0 € Q} CR5.  Then span(S) is a linear
subspace of R®.

If dim(span(S)) < s, then there exists a non-zero vector v = (vq, ..., vs) s.t.

V(1 (0) — 91 (60)) + - - + vs(ns(0) —ns(6y)) =0 VO
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contradicting the linear independence of {1,7; — 7;(6p)}. Hence

dim(span(S)) =s i.e.30q,...,05 € Q s.t.
(1.3.2) {(m(6:) = m(6o), - -+ s ms(6:) —ns(6o)), i =1,---,s}is LL
From 1.3.1,

S

> (0;(6:) = m;(00))Ty(x) = I ACH +(B(6;) — B(6)), i=1,...,s.

Since the matrix [n;(0;) — n;(60)]; ;= is non-singular, T;(x) can be expressed uniquely in

terms of In pei(m), i=1,...,s.
p@o(x)
But iji((j:))’ i = 1,...,s is minimal sufficient for Py = {Fy,,j = 0,1,---, s} by theorem
0
1.2.17. Hence T is minimal sufficient by theorem 1.2.19. [

ExaAMPLE 1.3.4.

/0 1 0
po(z) = %exp{—EQxQ + 0z — 5}

1
m(6) = —56, m(0) = 0, T(x) = (2*, z) is sufficient but not minimal

/| 0 1
since rewriting the model as py(z) = Dy exp{—EQ(x —1)%}, we see that
T
T*(z) = (x — 1)* is minimal sufficient.

REMARK 1.3.5. The exponential family can always be rewritten in such a way that the
functions {7;} and {n;} are AL If there exist constants cy,...,cs, d, not all zero, such
that

ali(x)+--+cTs(x) =d as. P

then one of the T;’s can be expressed in terms of the others (or is constant). After
reducing the number of functions 7; as far as possible, the same can be done with their
coefficients until the new functions {7;} and {n;} are AL

DEFINITION 1.3.6. (Order of the exponential family.) If the functions {T;,7 = , S}
on X and {n;,i = 1,...,s} on Q are both Al then s is the order of the exponentlal
family

dP,
po (z) = —2(z) = exp (Z 0 (0)T; (z) — B (9)) h(x).
PROPOSITION 1.3.7. The order is well-defined.

Proor. We shall show that
s+ 1=dim(V)
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where V' is the set of functions on X" defined by V' = span{l, In %(), 6 € Q} (inde-
0
pendent of the dominating measure p and the choice of {n;}, {1;}).

0 () = 3 (0) — 1O Ta) + B(Oo) — B(6)

i=1

1

so that

V Cspan{l,T;(:), i=1,...,s} . .dim(V)<s+1
On the other hand, since {1,7;, i« = 1,...,s} is LI, each Tj(x) can be expressed as a
linear combination of 1, In j;;zg(x), t=1,...,s, as in the proof of the previous theorem,

Sospan{ 1, Ti(+), i=1,...,s} CV
Sos+1<dim(V)

0J

DEFINITION 1.3.8. (Canonical Form) For any s-parameter exponential family (not
necessarily of order s) we can view the vector n(6) = (91(0),...,ns(0))" as the parameter
rather than 6. Then the density with respect to p can be rewritten as

p(w,m) = exp]>_nTi(x) — A(n)]h(z), nen(Q).
i=1
Since p(-,n) is a probability density with respect to u,
(1.3.3) A = /eZiniTi(’:)h(x)du(x).
DEFINITION 1.3.9. (The Natural Parameter Set) This is a possibly larger set than

{n(8), 0 € Q}. It is the set of all s-vectors for which, by suitable choice of A(n), p(-,n)
can be a probability density, i.e.

N={n=(m, - ,ns) CR*: [eXnTi@n(z)dpu(x) < oo}

THEOREM 1.3.10. N is a convex set, and A(n) is a convex function.

PROOF. Suppose a = (ay,...,qa5) and 8= (B,...,8s) € N. Then,

/ eP T i@+ (1-p) S BT (1) ()

1-p

p
< {/ e i Ti@p () du(m)} : {/ e B T@ (1) du(x) (Holder’s Inequality)

<0

The convexity of A(n) follows similarly (Bickel & Doksum, 2015, Theom 1.6.3). O
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THEOREM 1.3.11. T'= (T}, --- ,Ty) has density

py(t) =exp(n-t—A(n))

relative to v = i o T~ where dji (x) = h(x)du (x). (Note: this introduces the Jacobian
term k(t)dv in the density over Euclidean s-space, where k(t) = h(T~1(t)).)

PrROOF. If f:T — R is a bounded measurable function,
BIT) = [ fT@)er@e 0 diia)
- / ft)ete M Mdo T (1)

DEFINITION 1.3.12. The family of densities

py(t) =exp(n-t—A(n), nen),

n is called an s-dimensional or s-parameter standard exponential family. (Defined
on R* not X.)

THEOREM 1.3.13. Let {p, (z)} be the s-parameter exponential family,

— exp (Z 7 (6) T (x) — B <e>) h(@)), nenQ).

and suppose

(1.3.4) /¢ () e i@ dyy (z)

exists and is finite for some ¢ and all n; = a; + ib; such that a € N (=natural parameter
space). Then

i) [¢(z)e=1mTi@dy () is an analytic function of eachn; on {n: R (n) € int (N)}
and
(ii) the derivative of all orders with respect to the n;’s of [ ¢ (x) eX=1MTi@dy (x) can
be computed by differentiating under the integral sign.

PROOF. Let a° = (af, ..., S) be in int(N) and let 1 = af + ). Then
(x)e2 1O = hy () — ho(w) + i(hy(w) — ha(x))

where h; and hy are the positive and negative parts of the real part and hs and hy are
the positive and negative parts of the imaginary part.
Then [ ¢ (x) e=1mTi@)dy (z) can be expressed as

/ nhi@) dyy (x) — / nE@) dpy () + /e"lw) dps(x) — /6"1”’”) dpia(x),
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where dpu;(x) = hi(x) du(z), i = 1,...,4. Hence it suffices to prove (i) and (ii) for

wim) = [ ™ d(z).

Since a” € int(N), there exists § > 0 s.t. (n;) exists and is finite for all 7; with
la; — a?] < 6. Now consider the difference quotient

(+) wm) = v0m) _ / AT e —1
0 0
e m =
Observe that

p(da) (\with | — n| < 6/2.

2t e (et — |2tf |2t]
o= B e S EE
1 1
< |at]el
I 1
= 1 < il
The integrand in (¥) is therefore bounded in absolute value by |T(z)[e(@+2IT1@) where

ad = Re(n?) and [ |Ty(x)]e@+ DM@l (dz) < oo since
Ty|leiT @+ i Ty >0
)
T el 21T = bounded integrable
) [
Tylei™ e+ i Ty <0

(independent of 7).

Letting n; — 7Y in (*) and using the dominated convergence theorem therefore gives

(1.3.5) ¢M%=/ﬂmﬁmmmm

where the integral exists and is finite Vn? which is the first component of some n° for which Re(n°) €

N.

Applying the same argument to (1.3.5) which we applied to (1.3.4) = existence of all
derivatives = (i) and (ii). O

THEOREM 1.3.14. For an exponential family of order s in canonical form and n € int (N),
where N is the natural parameter space,

6) B, (1) =22 = (2, ,24)  and

‘on om0 s

(ii) Cov, (T) = 24, = [ oA }

- 67787]T anianj i,j:1'
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ProOF. From theorem 1.3.11

A = / ety (dt) = / T @ (x) p(dx)

SO
() e = [ Ti(a)er ™ n(a)p(a)
Whence E,T; = 677
(i) 5e™™ + §490eA0 = [ T(a)T (@)e T h(e)u(da)
2
Le. agig:]j = En<TzTJ) En(Tz)En( j) = Covy(T;, Ty)
O
Higher order moments of 77, - - , T, are frequently required, e.g.

Qry,rs = E(Tlrl o 'Tsrs)
fry,re = BTy — E(Ty))"™ - (Ts — E(T5))"™]

etc. These can often be obtained readily from the MGF:
MT(U17 e 7u8) = E(eulTlJ'_""i'usTs)

If M7 exists in some neighborhood of 0 (3 u? < §), then all the moments «, ... ., exist
and are the coefficients in the power series expansion

NI
et S
My(u, ..., us § Oy

Peeorg!

T1y--5Ts

The cumulant generating function, CGF, sometimes more convenient for calculations
(especially for sums of independent random vectors), is defined as

Kr(uy, ... us) :=log Mp(uy, ..., us).

If My exists in a neighborhood of 0, then so does K1 and

o0 1 r
u CEEEEY u S
1 s
KT(uly s 7u8) - E K‘Tl,...,Ts | 1o
_ ri.:°°Tg-
T1y...,7s=0

where the coefficients «,, ., are called the cumulants of T'.
The moments and cumulants can be found from each other by formal comparison of the
two series, and can be retrived from their respective generating functions as follows:

8’"1+"'+’"5MT(U1, - ,’LLS) 8T1+"'+T5KT(U1, - ,us)
Qpyoopy = Rpjeor, = .
T s au,’il . e augs ’ s au;l st au;‘s 0

For an exponential family, computation of these generating functions is particularly easy.
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THEOREM 1.3.15. If X has the density

) = exp [Z niTi(x) — A(n)]h(z)

w.r.t. some o-finite measure u, then for any n € int(N) the MGF and CGF of T exist
in a neighborhood of 0 and

Kr(u) = A(n+u)— An)
MT(u) — Alntu)—Am)

Proor. HW problem. [

Summary on Exponential Families. The family of probability measures {F,} with
densities relative to some o-finite measure ,

(1.3.6) po(z) = dPe = exp{z n:(T;(x) — B(0)}h(z), 6 € Q,

is an s-parameter exponential famlly

By redefining the functions T;(-) and 7;(+) if necessary, we can always arrange for both
sets of functions to be affinely independent. The number of summands in the exponent
is then the order of the exponential family.

If {1,m,...,ns} and {1,71,...,Ts} are both L.I., then the family is said to be minimal
(but this does not imply minimal sufficiency), and

s = dim(span{l,log o (1),0€Q})—1
dpa,
= order of the exponential family

REMARK 1.3.16. Since (1.3.6) is by definition a probability density w.r.t. u for each

0 € (), we have
e (SO - B6)} hw(d) -
- exp B(6) = / exp {Z m(@)Ti(x)} h(a)p(de)

which shows that the dependence of B on 6 is through n(60) = (7:(0),...,ns(0)) only, i.e.
B(#) = A(n(0)).

REMARK 1.3.17. The previous note implies that each member of the family (1.3.6) is a
member of the family.

(1.3.7) = eXp{Z &I ()} h(x), & = (&, &) €n(Q)
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(in fact po(x) = my0)(2)).

The family of densities {7, € 1(2)} defined by (1.3.7) is the canonical family as-
sociated with (1.3.6). It is the same family parameterized by the natural parameter,
¢ =vector of coefficients of Tj(z), i=1,...,s

REMARK 1.3.18. Instead of restricting £ to the set n(€2), it is natural to extend the family
(1.3.7) to allow all £ € R® for which we can choose a value of A(£) to make (1.3.7) a
probability density, i.e. for which

(1.3.8) /GXP{Z &, z (d%)

N ={£ € R%: (1.3.8) holds} is the natural parameter space of the family (1.3.7).

REMARK 1.3.19. N 2 7(Q) since (1.3.7) is by definition a family of probability densities.

DEFINITION 1.3.20. (Full rank family) As with the original parameterization, we can
always redefine £ to ensure that {71,...,7s} is A.L. If () contains an s-dimensional
rectangle and {7\(-),...,Ts(-)} is A.L, then T is minimal sufficient and we say the
family (1.3.7) is of full rank. (A full rank family is clearly minimal.)

REMARK 1.3.21. Since ' D n(2), full rank = int(N) # ¢ and this is important in view
of the consequence of theorem 1.3.13 that

/ exp Z@ ; )u(da)

is analytic in each &; on the set of s-dimensional complex vectors, £: Re(§) € int(N). (So
derivatives of eA®) wr.t. &, i =1,...,s of all orders can be obtained by differentiation
under the integral, yielding explicit expressions for the moments of T for all values of the
canonical parameter vector £ € int(N).)

where X; =

EXAMPLE 1.3.22. Multinomial X ~ M(6y,...,0s; n) = (Xo,..., Xs),
=0,...,s, is the

number of outcomes of type ¢ in n independent trials where 6;, 7
probability of an outcome of type ¢ on any one trial.

Q={0:0,>0,-,0,>0, O+ +0,=1}

(1)  Probability density with respect to counting measure on Z5™

pox) = TSR HISHI[M ) Iy (D 0)

1’0!

= exp{inlogHi}h(x), 0 < Q.
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This is an (s + 1)-parameter exponential family with T;(z) = x;,1;(0) = log6;.
The vectors n(f), 6 € €, are not confined to a proper affine subspace of R*; so
T is minimal sufficient.

(2) {Tv,...,Ts} is not AL since Ty + - - - + Ty = n. Setting To(z) = x9g =n — x1 —

e e — X, gives
S 0
po(x) = h(z)exp{nlogy + » x;log .-}
i=1 O
Redefining 7(0) = (log z—;, -+ log g—;), we now have an s-parameter represen-
tation in which {T1,...,T,} is A.L, since the vectors (xy, - ,z4),z € X, are
subject only to the constraints z; > 0 and  ;_; z; < n.
(3) Furthermore the new parameter vectors, n(0) = (log z—;, -+ log ), 0 € Q, are
not confined to any proper affine subspace of R?, since for any x € R* 360, ...,0,

such that n(#) = x and so n(2) = R*. Hence T'(z) = (x1,...,x,) is minimal
sufficient for P and the order of the family is s.
(4) The canonical representation of the family (2) is

) = exp(Y i — AQM(r), € € (@) = {(log g+ log 11): 0 € )

We know from remark 1.3.16 before that B(0) = A(n(¢)) for some function A(-).
Although it is not necessary, we can verify this directly in this example, since
from the representation (2) we have

B(0) = —nlog by

and

1 0, 0,
fp=1—-0,— —f,=> — =1+ L. 2=
0 | s g Tl gty
:1+€n1(0)+...+e7l5(0)
= B(#) = nlog(1 4 em® 4 ... 4 n®)

= A(¢) =nlog(l+ e + - +¢%)

A(€) is of course also determined by
eAl®) = /exp{Zfixi}h(x)du(m)
1

(5) The natural parameter space in this case is N' = R®, since we know that A/ D
n(2) and n(Q2) = R*® by (3) above. Clearly N contains an s-dimensional rectangle
and {T1,...,Ts} is A.L, hence {m¢(x),£ € N} is of full rank.
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(6) Moments of T'(X) = (X1, ..., X)
0A

Theorem 1.3.14 = E.T;, = o,

V¢ € R®

1—1—651-‘-...—'—658
0 0s
L+ 04t b
0%A
0&;06;
—nebiebs - .
m = —nb,0; e
nebi ne28i . .
(I4+efs)  (14-+eks)2 - ne ( 01) =]
(Moments exist V¢ € int(N) = R?)

and Cou(T;,T};) =

THEOREM 1.3.23. (Sufficient condition for completeness of T') If

) = exp (Z@mx)—mg))hw), cen®

is a minimal canonical representation of the exponential family P = {ps: 0 € Q} and
n () contains an open subset of R®, then T = (T3, ...,Ts)is complete for P.

PROOF. Suppose E¢(f(T")) = 0VE € n(2). Then,

(1.3.9) Eef*(T) = Fef~(T) e € n(9).
Choose &, € int(n(2)) and r > 0 such that

N(&o,r) :={€ : [[€ = &l <7} S ().

Now define the probability measures,
[ fresoty(de)
[, Fresi(dt)
[y frestv(de)
fj fresoty(dt)’

where we have assumed that v({t: f(¢) # 0}) > 0, since otherwise f = 0 a.s. Pr and we
are done.

AT(A) = v=poT, di(z) = h(z)u(dz),

A(A) =

Observe now that

(1.3.10) /@uww:/me)WEWMMWWw
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since

LS = / £ (dh) / FHE e (dr)

/f elétiye dt//f )<t (dr)

by (1.3.9)

Now consider each side of (1.3.10) as a function of the complex argument § = dy + 6,
0 € R°. Then

L(6) = R(5) V6 =00+i-60

with ||do]| < r, since (by Theorem 1.3.13 (i)) both sides are analytic in each component
of 0 on the set where Re(§y + ) € N and they are equal when 0 is real. In particular,

L(if) = / N (dt) = R(i6) = / AT (dt)

for all & € R*. Hence \™ and A~ have the same characteristic function = AT = \= =

ft = f" a.s., contradicting v(f #0) > 0. So f =0 a.s. v. O
EXAMPLE 1.3.24. X;,..., X,, @id N(u,0?), with 6% known.
B 1 ! 1 9 N
PulT) = (0v/2m)" exp{ 5D wi— 552 %~ 3

nw) =5 Te) =Y

Since n(€2) = R contains a 1-dim rectangle in R, T'(z) = > ; is complete (and sufficient,
or CSS).

EXAMPLE 1.3.25. X1,..., X, iid N(o,0?)

pa(x):< o) p{— 237 + = sz =h

m(o) = 252 Ti(z) = — 2%2
m(o) = é, Ty(z) =) a

Since 7(€2) does not contain a 2-dim rectangle in R? the theorem is silent about com-
pleteness. In fact, we can show that T'(z) = (3. 22, x;) is not complete since

2 2
E 2 _ N2 = n(202) — 2 2 2\ _
9{5 x; n+1(§ :cz)] n(20°) n+1(na +n°0°) =0, Vo,

but there exists no P-null set N such that Y- 27 — -25(3" #;)* = 0 on N°.
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1.4. Convex Loss Function

LEMMA 1.4.1. Let ¢ be a convez function on (—oo, 00) which is bounded below and suppose
that ¢ is not monotone. Then, ¢ takes on its minimum value ¢ and ¢~ (c) is a closed
interval and is a singleton when ¢ is strictly convexz.

PROOF. Since ¢ is convex and not monotone,
lim ¢ (z) = oc.

r—Fo00

Since ¢ is continuous, ¢ attains its minimum value c¢. ¢~ ({c}) is closed by continuity, and
is an interval by convexity. The interval must have zero length if ¢ is strictly convex. [

THEOREM 1.4.2. Let p be a convex function defined on (—oo,00) and X a random variable
such that ¢ (a) = E (p(X — a)) is finite for some a. If p is not monotone, ¢ (a)takes on
its minimum value and ¢~ (a) is a closed set and is a singleton when p is strictly convez.

PROOF. By the lemma, we only need to show that ¢ is convex and not monotone.
Because limy 1, p (t) = 00 and lim, 4+ & — a = +00,

ali)rziloo ¢ (CL) -
so that ¢ is not monotone.
The convexity comes from
¢(pa+(1=p)b) = Ep(p(X —a)+(1-p)(X-b))
< E(pp(X —a)+ (1 —p)p(X =)
= po(a)+(1—p)o(d).

1.5. Model Selection

Throughout the course we assume the family P is known a priori, so that the model to
be fitted to the data {X7,..., X} is correct.



CHAPTER 2

Unbiasedness

2.1. UMVU estimators.

Notation. P={PF,, 0 € Q} is a family of probability measures on A (distributions of
X).

T:X — R is an A/B measurable function and T (or T' (X)) is called a statistic.

g: Q — Ris a function on 2 whose value at 6 is to be estimated.

(X7-’47P0) g (X7A7P9) l) (R7B7PGT)

DEFINITION 2.1.1. A statistic 7' (or 7' (X)) is called an unbiased estimator of ¢ () if
Eo (T (X)) =g(0) for all 6 € Q.

Objectives of point estimation. In order to specify what we mean by a good
estimator of g(f), we need to specify what we mean when we say that 7'(X) is close to
g(0). A fairly general way of defining this is to specify a loss function:

L(6,d) = cost of concluding that g() = d, when the parameter value is 6.
L(#,d) > 0and L(0, g(#)) = 0.

Since T'(X) is a random variable, we measure the performance of T'(X) for estimating
g(0) in terms of its expected (or long-term average) loss

R(0,T) = EgL(0,T(X)),

known as the risk function.

Choice of a loss function will depend on the problem and the purpose of the estimation.
For many estimation problem, the conclusion is not particularly sensitive to the choice
of loss function within a reasonable range of alternatives. Because of this and especially
because of its mathematical convenience, we often choose (and will do so in this chapter)
the squared-error loss function

L(0,d) = (9(0) — d)’
29
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with corresponding risk function

(2.1.1) R(0,T) = Ep(T(X) — g(6))?

Ideally we would like to choose 1" to minimize (2.1.1) uniformly in #. Unfortunately this
is impossible since the estimator 1" defined by

(2.1.2) T(z)=g(6) VreX
(where 6 is some fixed parameter value in 2) has the risk function,

B 0 if =0
Rw’”‘{ (9(0) — 9(00)) if 00,

An estimator which simultaneously minimized R(0,7T) for all 8 € € would necessarily

have R(0,T) = 0V € Q and this is impossible except in trivial cases.

Why consider the class of unbiased estimators? There is nothing intrinsically
good about unbiased estimators. The only criterion for goodness is that R(6,7") should
be small. The hope is that by restricting attention to a class of estimators which ex-
cludes (2.1.2), we may be able to minimize R(¢,T") uniformly in 6 and that the resulting
estimator will give small values of R(#,T). This programme is frequently successful if
we attempt to minimize R(6,T) with T restricted to the class of unbiased estimators of

9(0).
DEFINITION 2.1.2. ¢(f) is U-estimable, if there exists an unbiased estimator of g(0).

ExXAMPLE 2.1.3. Xi,..., X, iid Bernoulli(p), p € (0,1). g(p) = p is U-estimable, since
EX, =p Vpe€ (0,1), while h(p) = % is not U-estimable, since if

i n—y ; 1
> T(x)p="i(1—p)" = =2 e (0,1),

lim,_,o RS = oo and lim, ,o LS = T'(0). So T'(0) = oo, but this is not possible since then
E,T(X) =00 #  Vpe (0,1).

ZZL: X n -1 n :
REMARK 2.1.4. === a.s p and SR @S D Vp € (0,1). Hence s 1S 2

reasonable estimate of p~! even though it is not unbiased.

THEOREM 2.1.5. If Ty is an unbiased estimator of g(0) then the totality of unbiased
estimators of g (0)is given by

{To — U : EgU =0 for all 0 € Q} .

PROOF. If T'is unbiased for g(0), then T' = Ty—(To—T') where Ey(Ty—T) = 0 V0 € Q.
Conversely if T'= Ty — U where EyU = 0V0 € Q, then E)T = ETy = g(0) V6 € Q. O



2.1. UMVU ESTIMATORS. 31

REMARK 2.1.6. For squared error loss, L(0,d) = (d — g(6))?, the risk R(0,T) is
R(0,T) = Ep((T(X) — 9(0))*)

= Varg(T(X)) if T is unbiased

= Vary(To(X) = U)

= Ey[(To(X) — U)’] - 9(0)
and hence the risk is minimized by minimizing Fy[(Tp(X) — U)?] with respect to U, i.e.
by taking any fized unbiased estimator of g(f) and finding the unbiased estimator of zero
which minimizes Fy[(Ty(X)—U)?]. Then if U does not depend on § we shall have found a
uniformly minimum risk estimator of g(é), while if U depends on 6, there is no uniformly
minimum risk estimator. Note that for unbiased estimators and squared error loss, the

risk is the same as the variance of the estimator, so uniformly minimum risk unbiased is
the same as uniformly minimum variance unbiased in this case.

EXAMPLE 2.1.7. P(X = 1) =p, P(X = k) =¢*p*, k=0,1,..., where g = 1 — p.
To(X) = I{—13(X) is unbiased for p, 0 <p < 1
Ti(X) = I0y(X) is unbiased for ¢,

U is unbiased for 0

0=y UKPX =k =pU(-1)+ > _ U(k)g*"
k==1 k=0
=U(0) + i(U(k) —2U(k— 1)+ U(k — 2))p*

<U(k) = —k:U( 1) = ka for some a
(comparing coefficients of p*, k =0,1,2,...)

So an unbiased estimator of p with minimum risk (i.e. variance) is Tp(X) — afX where
ay is the value of a which minimizes

Ey(To(X) —aX)* =) By To(k) — ak)?

Similarly an unbiased estimator of ¢* with minimum risk (1.e. variance) is T1(X) — a} X
where a7} is the value of a which minimizes

E,(T1(X) — aX)* = B(X = k)[Ty (k) — ak]?
Some straightforward calculations give
ag = 2_p00 2
p+q® Xy kP
Since a} is independent of p, the estimator T} (X) of ¢* is minimum variance unbiased for

all p, i.e. UMVU. However afj does depend on p and so the estimator 75 (X) = To(X) —
as X is only locally minimum variance unbiased at p. (We are using estimator

and a] =0
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in a generalized sense here since 7 (X) depends on p. We shall continue to use this
terminology.) An UMVU estimator of p does not exist in this case.

DEFINITION 2.1.8. Let V(0) = infr Varg(T') where the inf is over all unbiased estimators
of g(#). If an unbiased estimator T of g(0) satisfies

Varg(T) =V (0) Vb€ Q it is called UMVU

If
Vareg,T =V (0y) for some fy € Q T is called LMVU at 6,

REMARK 2.1.9. Let H be the Hilbert space of functions on X which are square integrable
with respect to P (i.e. with respect to every Py € P), and let U be the set of all unbiased
estimators of 0. If T} is an unbiased estimator of g(#) in H, then a LMVU estimator in H
at 0y is Ty — Py(Tp), where Py denotes orthogonal projection on U in the inner product
space L?(Py,), i.e. Py(Tp) is the unique element of U such that

To — Pu(Ty) LU (in L*(Py,)).
To — Py(Ty) is LMVU since Py(Ty) = arg mingey Eg, (Ty — U)?.

NOTATION 2.1.10. We denote the set of all estimators T with EyT? < oo for all § € Q
by A and the set of all unbiased estimators of 0 in A by U.

THEOREM 2.1.11. An unbiased estimator T' € A of g (6) is UMVU iff
Eg(TU) =0 for allU € U and for all § € 2.
(i.e. Covy (T,U) =0 since EgU =0 for all 6 and EyT = g (0) for all 0 € 2.)
PROOF. (=) Suppose T is UMVU. For U € U, let T" = T + AU with A real. Then
T’ is unbiased and, by definition of T,
Varg(T') = Varg(T) + NVarg(U) + 2ACovy(T,U) = Vary(T)

therefore, N2V arg(U) + 2ACovs(T,U) > 0. Setting \ = —C“/’Zig{g) gives a contradiction

to this inequality unless Cove(T,U) = 0. Hence Couvy(T,U) = 0.

(<) If Ey(TU) = 0 VU € U and VO € 2, let T" be any other unbiased estimator. If
Varg(T") = oo, then Varg(T) < Varg(T"), so suppose Varg(T") < oo.
Then T" =T — U, for some U which is unbiased for 0 (by Theorem 2.1.5).
U=T-T = EU? = Ey(T' —T)?
< 2By T + 2B, < o0
=Uel
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Hence
Varg(T") = Vare(T — U)
= Vary(T) + Vare(U) — 2Covy(T,U)
> Varyg(T) since Covy(T,U) = 0,
= T'is UMVU.
[

Unbiasedness and sufficiency. Suppose now that 7' € A is unbiased for g(f) and
S is sufficient for P = {P, 0 € Q}. Consider

T' = Eo(T|S) = E(T|S) independent of 6
Then
(a)
(b)
Varg(T) = Eo(T — E(T|S) + E(T|S) — g(0))*
= Ey((T — E(T|S))*) + Vary(T") + 2E,[(T — E(T|8))(E(TS) - 9(9))]
> Vary(T').

On the second line we used the fact that T'— E(T|S) is orthogonal to o(S). The inequality
on the third line is strict for all 0 < T'= E(T|S) a.s. P.

THEOREM 2.1.12. If S is a complete sufficient statistic for P, then every U-estimable
function g (0) has one and only one unbiased estimator which is a function of S.

PROOF.
T unbiased = E(T'|S) is unbiased and a function of S
T1(S), T5(S) unbiased = Ep(T1(S) — T2(S)) =0 VO
= T1(S) = T2(S) a.s. P (completeness)
0J

THEOREM 2.1.13. (Rao-Blackwell) Suppose S is a complete sufficient statistic for P.
Then

(i) If g (0) is U-estimable, there exists an unbiased estimator which uniformly min-
imizes the risk for any loss function L (6, d) which is convex in d.

(ii) The UMVU in (i) is the unique unbiased estimator which is a function of S; it
is the unique unbiased estimator with minimum risk provided the risk is finite
and L is strictly convex in d.
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PROOF. (i) L(0,d) convex in d means
L(0,pdy + (1 = p)dz) < pL(0,dy) + (1 — p)L(0,d2), 0 <p < 1.

Let T be any unbiased estimator of g(6) and let 7" = E(T | S), another unbiased
estimator of g(6). Then

R(0,T") = Ey[L(6, E(T | S))]
< Ep[Eg(L(0,T) | S)], by Jensen’s inequality for conditional expectation,
= EyL(0,T) = R(0,T) V6.
If T; is any other unbiased estimator then
Ty=E(Ty|S)=T as. P by Theorem 2.1.12.

Hence starting from any unbiased estimator and conditioning on the CSS S
gives a uniquely defined unbiased estimator which is UMVU and is the unique
function of S which is unbiased for g(#).
(ii) The first statement was established at the end of the proof of (i).

If Tis UMVU then sois 7" = E(T | S) as shown in (i); We will show that T
is necessarily the uniquely determined unbiased function of S, by showing that
T is a function of S a.s. P.

The proof is by contradiction. Suppose that "T' is a function of S a.s. P" is
false. Then there exists 6 and a set of positive Py measure where

T':=E(T|S)#T
But this implies that
R(0,T') = Eo(L(0, E(T | 5)))
< Ey(Ep(L(0,T) | 5))
(Jensen’s inequality is strict unless E(T | S) =T a.s. Py)

= R(0,T)

contradicting the UMVU property of T
OJ

THEOREM 2.1.14. If P is an exponential family of full rank (i.e. {m,...,ns} and
{T,...,Ts} are AL and n(Q2) contains an open subset of R®) then the Rao-Blackwell
theorem applies to any U-estimable g (6) with S =T.

PROOF. T is complete sufficient for P.
[Some obvious U-estimable ¢(0)’s are

EyTy(X) = % ey . 10:0(6) € int(A)},

where 7¢(7) = e2&T:@)~-AOh(7) is the canonical representation of py(z).] O
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Two methods for finding UMVU’s

Method 1. Search for a function 6(7"), where T is a CSS, such that
E¢d(T) = g(0), V0 € Q.
EXAMPLE 2.1.15. Xi,..., X, iid N(u,0?), p € R, a% > 0.
T =(X,S?)is CSS.
E, X = pu
X is UMVU for p.

Method 2. Search for an unbiased 6(X) and a CSS T'. Then
S = E(3(X)| T)is UMVU
EXAMPLE 2.1.16. Xi,..., X, 4id U(0,0), § >0

0
0) =—
9(0) = 5
01(X) = X is unbiased
X(n) is CSS
LS =E(X | X)) is UMVU
To compute S we note that given X,y = =,
1
Xi=zxzwp. —
n
1
X, U0, z) wp. 1 ——
n
T l.z n+1lx
LS)=—+(1——-)= = =
(z) n +( n)2 n 2
1 1 0
S(X(m) = E"Z Xny is UMVU for 5
n+1

=

X(n is UMVU for 6
REMARK 2.1.17.

(a) Convexity of L(0,-) is crucial to the Rao-Blackwell theorem.
(b) Large-sample theory tends to support the use of convex L(0, ).

Heuristically if X3,..., X, are iid, then as n — oo the error in estimating g(6) — 0 for
any reasonable estimates (in some probabilistic sense). Thus only the behavior of L(6, d)
for d close to g(0) is relevant for large samples.

A Taylor expansion around d = g(f) gives

L(0,d) = a(0) +b(0)(d — g(0)) + c(0)(d — g(#))* + Remainder
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But
L(#,g(0)) =0=a(f) =0
L(0,d) >0=5b(0)=0
Hence locally, L(0,d) «~ c¢(0)(d — g())?, a convex weighted squared error loss function.

EXAMPLE 2.1.18. Observe X, ..., X,,, iid N(§,0?), and Yi,...,Y,, iid N(n,7?), inde-
pendent of Xy, ..., X,,.

(i) For the 4-parameter family P = {Pe, .22}, (X,Y,5%,57) is a CSS since the
exponential family is of full rank. Hence X and S% are UMVU for ¢ and o?
respectively and Y and S% are UMVU for n and 72.

(ii) For the 3-parameter family P = { Py, 2,2}, (X Y,SS) is a CSS, where SS :=
(m —1)S% + (n — 1)Sy. Hence X,V and —22— are UMVU for &,7 and o”
respectively.

(iii) For the 3-parameter family with ¢ = n, 0% # 72 (which arises when estimating
a mean from 2 sets of readings with different accuracies), (X,Y, S%, S3) is min-
imal sufficient but not complete, since X —Y # 0 a.s. P, but Eg(X Y)=0V0.

To deal with Case (iii) we shall first show the following: If Z—z = r for some fixed
r, i.e.
P = {Pegrreqn}
then 7% = (3 X; +7 ) Y, > X7 +7 ) Y}) is CSS
PROOF.
1 1 1

(2m) """ (rr2)z (7'2)%
xexp{ Z +—m§_ 2r72_ﬁzyl+_ Ey—%}
= exp {~A(£, 7)) *exp{— nyH%(ZwWZM}

Per2(x,y) =

O

Since T™ is a CSS for P* and since T} = mei# is unbiased for &, it is UMVU
for £ in P*.

T is also unbiased for £ in P = {FPe¢ 2 12}

oii o
5, Where — =r.

2 2 -
V(€0a 09, TO) < Varva"(Q)ng (Tl) mTO + nog To



2.2. NON-PARAMETRIC FAMILIES 37

(V is the smallest variance of all unbiased estimators of ¢ for P evaluated at
507 0-(%7 Tg)

On the other hand, every T which is unbiased for £ in P is also unbiased in
P*. Hence if T is unbiased for £ in P, then

X Y; A
LXitrd, ), wherer:g—g,
m—+rn 7o

VaT’gopg’Tg (T) = Vargoﬂ(z)’.rg(

and the inequality continues to hold with the left-hand side replaced by V (&, 02, 72).
2.2
So V (&, 08,72) = —22—~ and the LMVU estimator at (£y, 03, 72) is

ng +nogy
2
o,
Y Xi+ B YY
3 .

g,
m+ =3n
70

2

Since this estimate depends on the ratio r = i—%, an UMVU for ¢ does not exist
0

in P.

A natural estimate for £ is

2
R ZXi"‘g_)?;ZYi
g: SZ :

°X
m+S}2/n

(See Graybill & Deal, 1959, for its properties.)

2.2. Non-parametric families

Consider X = (Xy,...,X,), where Xy,..., X, are iid F, where F' € F, a family of
distribution functions, and P is the corresponding product measure on (R™, B"). For
example,

Fo = df’s with density relative to Lebesgue measure,
F1 = df’s with /]x|F(da:) < 0,
Fo = df’s with /xQF(dx) < o0, etc.

The estimand is g: F — R. For example,
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PROPOSITION 2.2.1. If Fy is defined as above, then (X, ..., X)) is complete sufficient
for Fo (i.e. for the corresponding family of probability measures P).

PROOF. We know that T'(X) = (X1, ..., X(n)) is sufficient for P. It remains to show
(by problem 1.6.32, p.72) that T is complete and sufficient for a family Py C P such that
each member of P, has positive density on R™. Choose Py to be the set of probability
measures on B" with densities relative to Lebesgue measure,

C(0y,--- ,Qn)exp{elzxi +922xiﬂjj +- 4Oy xy, — fo”}}
i<j
This is an exponential family whose natural parameter set N contains an open set (N =
R"™). So S(z) = (X @i, Do wixj, -+ ;1 xp) is complete. But S is equivalent to T
(consider the n'™ degree polynomial whose zeroes are T(1), L), so T is complete for
Fo. O

Measurable functions of the order statistics. If T'(z) := (2(1),..., %)) then
5(X1,. . X)) € o(T) & 6(X1, .., Xn) = 0(Xnys s X))

for every permutation (my,...,m,) of (1,...,n). Since T is a CSS for Fy, this enables us
to identify UMVU estimators of estimands g for which they exist.

EXAMPLE 2.2.2. g(F) = F(a). An obvious unbiased estimator of F'(a) is
1 n
Tl (X) = ﬁ Z I(—oo,a] (XZ)
i=1

and T} € o(T) so Ty is UMVU for F(a), F' € Fy.
EXAMPLE 2.2.3. ¢(F) = [xdF, F € FyN F,. Let

1 n
5(2) n ;
Then Ty € o(T) and, since T is also complete for Fy N F, it is therefore UMVU for pp.

EXAMPLE 2.2.4. g(F) = 0%, F € Fo N Fy. Let

Ti(z) = S(z)* = Dwi—2? _ Yrw — 5 22w)

n—1 n—1
Ty € o(T) and is unbiased for o%. Since T is complete for Fo N Fy, Ty is UMVU for

2
O-F-

REMARK 2.2.5. T complete for F does not imply generally that 7" is complete for 7* C F.
In fact the reverse is true. Completeness for F* implies completeness for F. However
the same argument used in the proof of Proposition 2.2.1 shows that

T is complete for Fy N Fy (used in example 2.2.3) and
T is complete for Fo N Fy (used in example 2.2.4).
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EXAMPLE 2.2.6. g(F) = p%, F € FoNF,
1
Ty (X)=— X2, — S%(X)is UMVU f F).
SX) = 30X - (X s or g (F)

This result could also be obtained by observing that X;X, is unbiased for p%, F €
FoNFy, therefore E(X Xy | X1y, ..., X)) is UMVU. But conditioned on Xy, -+, X(»),

2

—1) for each subset {i,j} of {1,...,n} withi < j
n _

1
S EXX [ Xy, X)) = WZX@XU)
i#£]

- (X - X
= YN (N ()

= Ty(X)

More generally suppose g(F') is U-estimable in Fy. Then
= 6(X17 e ,Xm) such that EF(S(Xh e ,Xm) = g(F) VF € ]:0.

Suppose also that §(X7,...,X,,) has finite second moment for F' € Fy N Fy for some
positive integer k. We can assume § is symmetric in Xq,..., X,,, since if not we can
redefine ¢§ as

. 1
(Xt Xom) = — .Z O(Xpyso s X))
permutations = of (1,...,m)

which is also unbiased and symmetric.
Now we define the U-statistic (Serfling, 1980),

T=— 3§ (XX

(m) 1<t <in < <im<n

This is symmetric in X7i,..., X, and unbiased, and therefore UMVU for g(F), F €
Fo N Fg.

Questions

(1) Which g(F) are U-estimable?
(2) If g is U-estimable, what is the smallest value of m for which there exists a
U-statistic for g of the form 77 This number is called the degree of g.

PROPOSITION 2.2.7. If g is of degree 1, then for any F\, Fy € Fo, g(aFy + (1 — a)Fy) is
linear in .
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PROOF. If g is of degree 1, there exists §(X;) such that
[ s = g(p)

Lglali 4+ (1 —a)Fy) = a/é(:p)Fl(dx) +(1 - /5(x)F2(dx)
= ag(F1) + (1 — a)g(Fz).
O

Generalization. If g is of degree s, then g(aF; + (1 — a)F3) is a polynomial in « of
degree < s (since dF(xy,...,xs) = a*dFy(xy1) - - - dFy(xs) if Fy is replaced by aF.)

EXAMPLE 2.2.8. ¢g(F) = 0% is of degree 2 in Fy N Fo.

PROOF. Let 6(X1, X,) = 1(X; — X,)?, then
Epd = BpX? — Ep(X,X,) = 0%
so deg(g) < 2. To show deg(g) # 1, consider
glak + (1 —a)Fy) = Uchﬁ-(l—a)Fg

— / 2dFy(2) + (1 - a) / B2dFy(x) — lapir, + (1 — 0)pip)?

and this is linear in o. < pp = pp,. But this is not the case for every Fi, [y € Fy N Fo.
Hence deg(g) = 2. O

EXAMPLE 2.2.9. g(F') = op is not U-estimable in Fy, since g(aF; + (1 — a)F) is not a
polynomial.

2.3. The Information Inequality

For any estimator 7' € A of ¢ (A) and any function v (X, 0) such that Ep ¢ (X, 0)|* < oo,
we have the inequality

|Covg (T, )|
(2.3.1) Vary (T) > Vars (0 (K00

However, this will not in general provide a useful lower bound for VaryT since the RHS
depends on T'. It can be useful however when the RHS depends on 7' in a simple way, in
particular when it depends on T only through E,T.

THEOREM 2.3.1. Covy (T,%) depends on T only through EyT iff
Covy (U,v0) =0 for all U € U N A (unbiased square-integrable estimators of 0).
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PROOF. (<) Suppose Covg(U,¢) = 0 for all U € U N A and that T, T, are two
estimators with finite variance and

EoyT1 = EgTs VO € Q.
Then Ty — Ty, € U, so Covg(T1,) = Covg(Ts, 7).

(=) If Covyg(T, 1)) depends on T only through EyT and if U € U, then

Covg(T + U, 1)) = Covg(T, )
o Covg(U,9) =0

Hammersley-Chapman-Robbins Inequality

Suppose X has probability density p(x,0) 6 € Q, where p(x,0) > 0 Vx and 6. Suppose
36,0+ 6 s.t. g(0) # g(0+ ). Then,

~ plz,0+9)

satisfies the conditions of the previous theorem, i.e. Covg(U,v) =0 VYU € U N A, since
Eopp(X,0) =0 and Ep(Uy) = [U(z)(p(x,0 + §) — p(x, 0))du(x).

-1

For any statistic S € A,

Coug(S, ) = Ep(Sth) = / Slp(z, 6 + 8) — p(z, 8)]u(dx)

= FEyg,5S — EpS
_ 0 if Selu,
| g(@+9)—g(@) if Sisunbiased for g(6.)

Hence from (2.3.1), if 7' € A is unbiased for g(0),

(9(0 +0) —g(0))?

X,0+6
EQ[(p;(X;)) - 1)2]

Vare(T) > V4.

Hence we obtain the

HCR bound

VCLT@(T) > sup (9(0 + 5) — 9(9))2

X,0+0)y
5 Varg(p(p(x;) )

if T is unbiased for g(0).
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Letting 6 — 0 in the HCR bound gives

(M)Q
VaryT > lim n J
)

-0 Fy( p(KﬁQ;};Wﬁ))Q
Ak
Eo(%/l?)z
g'(0)*

- dlog p(X,0
Ee( ggé ))2

provided g is differentiable and we can differentiate under the expectation. These steps
are legitimized under the conditions of the following theorem.

THEOREM 2.3.2. (Cramer-Rao Lower Bound CRLB) Suppose that the densily of

the sample p(z,0) > 0 and % log p(z,0) exists for all x and 0, and that for each 0 there
exists O such that

‘ 0’ 5 Pd) < Pg and
o—0|<0= (z,9)
ol | Bed) 1‘ < G (z,0)

(where G is independent of ¢ and EyG (X,0)° < oo for all 0). Then for any unbiased
estimator T of g (0),

g (0)’

1(0)°

VaryT >
where
2
I1(0) =E, (aloga—pg(‘”’@> : = Fisher Information

2
(9’ ((9))2 — limsupd)_w (W) '

ProOOF. By the HCR bound

1 p(x,¢) 2 L
Var(T) [ o= (2] = 12 pla.0) i) = (2

Let {¢,} be a sequence such that ¢, — 6 and

9(¢n) — 9(0)
bn — 0

Then setting ¢ = ¢, in the above inequality and letting n — oo, gives (by DC)

( )* = (g'(0))".

Vars(T) Bl logp(X, 0))° > ¢/(0)
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COROLLARY 2.3.3. If Xy,..., X, are iid Py (the marginal distribution of X;) and the
corresponding marginal density p1 (x,0) satisfies the conditions of the Cramer-Rao Lower
Bound theorem, then for any unbiased estimator T (X1, -+, X,,) of g (0),

g (0)° dlogpi (X1,0)\*

Varg (T') > where I (0) = Ey (

PROOF. The sample space is X" and
dP
0 H]hﬂ?l, where " = p @ u® -+ ® p.

The Fisher information for Py is

/( long1 x;, 0 ) p1(x1,0) - pr(x,, O)p" (d)

N / (Z W)W 0) - pr(n, O)u" (de)
/Z (810gp1 i ))2])1(%’9) oy (2, O) ™ (d) = I ()

since
dlog 0log B 0log 2 )
Eg[ 50 m (X5, 0) 50 pl(X],G)} = [Eg 50 pl(XUG)} (by independence)
and
0log

(We can differentiate under the integral sign by DC and the assumptions on p;(x;,0)).

The statement of the Corollary now follows if we can show that the assumptions on
p1(x;, 0) carry over to p(z,0), i.e. that ¢ — 0| < =

pl(wla ¢) o 'pl(‘mnv ¢>
pi(21,0) - p1(ay, 0)
where EpG2(X, ) < 0o

— 1| /¢ 6] < G(z,6)

Now

p1(s, ¢)
h (l‘“ 9)

<1+ |¢—0|G(xi,0)
< 1+ 6G(x;,0)
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and

lay - --a, — 1| <l|ay---a, —as---a,| +|ag---a, —ag---a,| +--- by the triangle inequality,
<lay —1l|ag - an| + lag — U]ag - an| + -+ - + |a, — 1.

Setting a; = % gives

| p1(z1,9) - p1(@n, @) —1|<|p— 9|G(;p1,9)H(1 + 0G(z4,0))

pl(ajae)pl(xnae) i1

+ 16— 0]G(x2,0) [ J(1 + G (24, 0))
1>2
+ e
+ ¢ — 0|G(xp, 0)
=16 - 0|G(,0)
and EyG(X,0)? < oo since Xi,...,X, are independent and FyG(X;,0)%> < oo. (No
G(X;,0) is raised to a power greater than 2.) O
COROLLARY 2.3.4. Suppose p(z,0) satisfies the conditions of theorem 2.3.2 and
EyT(X) = g(6) + b(6)
i.e., T(X) has bias b(0) for estimating g(0). Then
MSEy(T) = Ey (T(X) — g(6))”
= b%(0) + Vo(T)

2 C(9>
>) (9) + m
where
i s ((9(9)+5(9) — 9(0) +b(0) ]
0(8) B hrqrbl—w P < ¢ —0 >

PROOF. T is unbiased for g(#) + b(6), so

By (T(X) — g(6) — b(0))* = 220

1(9)
Hence MSE = Eo(T(X) — g(0))* = VargT(X) + [Eo(T(X) — g(0))]* > b*(9) + %.
O
Behavior of I(-) under reparameterization. Suppose o = h () reparametrizes

{Py:0€Q}to{P:: ach(Q)}. Then
P (ZL‘,CY) = p($, he (CY)) )
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where h* denotes the inverse mapping and, by definition,

re = B (G« a>)2

156
dlogp (X, 0) d . 2
£ (P @)
— (0 () (dh da(o‘>)
_ 1)
(1 (9)) 6=h* (a) '

An alternative expression for /(). Provided g—; log p(z, 0) exists for all z, § and if

82 52
(2.3.2) / Sap(a,6) du(r) = = / p(e,6) du(z) =0,
then
62
1(0) = —E [ﬁ logp(x,ﬁ)} :
PRrROOF.
2 0 gy (e@h) 2
— logp(z,0) = 52P(2,0) — (T%)
002 p(z,0) p(x,0)?
and E, [p(X, 0) L2 p(X, 0)] = 0 by (2.3.2). 0

THEOREM 2.3.5. One-parameter exponential family. Suppose

p(x,0) = exp (T'(z)n(0) — B(0)) - h(z),
where 0 = EgT and n(0) € Int(N'). Then

1

and  I(n) = Van,T.

PROOF.
/ @A () (d) = 1

and A'(n) = E,T, A"(n) = Var,T. Hence § = A'(n).
Now 7(x,n) = e"@n=Ap(z) (This is the canonical representation of the density of the
exponential family. See (1.3.7)). Hence alog+n(x’") =T(x)— A'(n), so

I'(n) = Ey(T(X) — A'(n)* = Var,T
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Since 6 = A'(n) = h~'(n), and we have I*(n) = 1(8(n))(A"(n))%. So

10) = I"(n(9))/A"(n(6))”
= VaryT/(VaryT)?
1
VareyT

O

REMARK 2.3.6. T attains the CR lower bound in this case. A converse result also holds:
under some regularity conditions, attainment of the CR lower bound implies that T is
the natural sufficient statistic of some exponential family {Fp}.

EXAMPLE 2.3.7. Poisson family. Suppose that Xy,..., X,, are iid Poisson. Then

1

PIE] 1
_ 6—n0+nlogQT n= TLlOg 07 - en/n

— ’U/" Z Iz 1
e ne +n==

m(z,n) = o
1 L

plz,6) = o=

T(2) = 2% i UMVU for ¢

n
Alm) = =4
17 1 9
A(n) = Een/n ~
. 0
I"(n) = Var,T = "
1 n
1o = VaryT - 0

The information on nlog € increases with 6. The information on 6 decreases with 6.

THEOREM 2.3.8. Alternative version of CRLB theorem.
Suppose Q) is an open interval, A = {z: p(x,0) > 0} is independent of 0, %2(x,0) is finite

X
];07: all v € A and for all 0 € Q, EgZlogp(z,0) = 0, Z(EyT) = [T(x)%(x,0)u(dr).
en

’89

9 2
Vary(T(X)) > —( agf;;?>
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PROOF. Choose 1(z,0) = 2 logp(z,6) in (2.3.1).

0 0
Covg (T,%logp(X, 9)) = Ey (T% log p(X, 9)>

-/ 1) %D )
0

= %(EGT)

Varg (%log p(X, 9)) = 1(9).

2.4. Multiparameter Case

Here we consider the generalization to vector 6 = (6,,...,05) € Q. The estimator 7" may
be either scalar (when estimating a scalar function of #) or vector. (In Ch. 4 we will
consider generalizations to estimation of vector g(#) based on vector T'.)

THEOREM 2.4.1. For T (X),¢1 (X,0),--- s (X, 0) functions with finite 2nd moments
under Py, we have the multiparameter analogue of (2.5.1),

Varyg (T) > v1C ™1y,
where ¥7 = (y1,- -+ ,7s), % = Covg (T,1hi) and C = [Covy (¥5,45)];

PROOF. Let Y denote the minimum mean squared error linear predictor, of ¥ =

Y1 — Egihy
T — EgT in terms of ¥ = e . Then

¢s - E9¢s

where E, ((Y — V(e — E9¢j)) —0, j=1,....s ie.

Ca=~=Cou(T,V)
These equations have a solution and hence

a=C"ly
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where C~! is any generalized inverse of C' = Ey(U¥’). So Y =~TC~10,
Also

E(Y-Y)?=EY?—-EY? sinceY LY —Y in L*(P))
= VaryT — E(y7C'0UTC 1Y)
= VareT —~7TC™ 1y
L EY =Y)?=Var,T —~TC7'y >0
s VaryT >~+TC 1y

Notice that the right hand side is the same for any generalized inverse C~! of C. OJ

Generalization of the Information Inequality

Assume that
(2 is an open interval in R®
A ={z:p(x,0) > 0} is independent of 6
S (x,0) is finite Ve € A, VO € Q, i =1,...,s
Ega%ilogp(X,H) =0,i=1,...,s

DEFINITION 2.4.2. The information matrix.

10)= |0 5

0
log p(X. 6)— log p(X
20, og p( ’Q)aej og p( 79)”
= |c 9 Jog p(X.0)-2 1og p(X, ) S

S

1,j=1

1(0) is strictly positive definite if {%logp(X, 0),i = 1,...,s} is linearly independent
a.s. By.

THEOREM 2.4.3. Under the previous assumptions, if 1(0) is strictly positive definite and
if T(X) satisfies

E,T(X)? <00 VO

and
2 Br(x) / ()2 p(a, 0) ()
then
VargT(X) >~ 1(0) 1y
BT (X)
where v =
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PrRoOOF. This is a direct application of Theorem 2.4.1 with the functions ; defined
by

Yi(x,0) = 20, (x,0)
U
Reparameterization. If §; = f;(ay,...,a5), i=1,...,s, then we have:
e dlog p* dlog p* 3
I'(a) = {E { Ja, (X, ) J, (X, ) -
dlogp dlogp 20,
X X,
- XX 2 (282 x,0) 702 x,0)) a%] .
J:

= JI(6)J"

20, 1°
where J = [6—3] .
g |
i,7=1

COROLLARY 2.4.4. If 1(0) is strictly positive definite, the elements of T = (T4,...,T,)
are finite variance unbiased for the respective elements of g(0) = (g1(0),...,g.(0)) and
each T; satisfies the conditions of theorem 2.4.3, then, EyT = g(0) and,

dg dg

2.4.1 T > I ) (=)
991 .., 991
5 96, 90,
where A > B means a’ (A — B)a > 0, Va € R™ and 55 =
671, 877,

PROOF. Since a’ (CovgT)a = Var(a'T), (2,4,1) is equivalent to
dg 99 .1
10
207 05,
But the above inequality follows at once by applying theorem 2.4.3 to the real-valued

statistic a? T for which

Varg(a™T) > a” ( )'a VaecR™

36, Eg( T) 00 Eg(TT) 99 r
T e | o |t @
a_esE ( T) a9 o (T )
O
COROLLARY 2.4.5. If Ty, --- Ty are unbiased for

01, 0, then
Covg (T) > 1(6)7".

PROOF. Apply corollary 2.4.4 with ¢;(0) = 6;, i = 1,...,s (where % = Igxs)- O
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REMARK 2.4.6. Suppose we wish to estimate #;. If 0,,...,60, are known then the CR
lower bound is

If Oy, ...,0s are not known, then the CR bound for estimating 6; is the (1,1) component
of I71(0), denoted by I7'(6)1, (by Corollary 2.4.4 with T' = 6; and ¢() = 6,). Naturally

we expect
Olog 2]
E p(X.0) < I7H(0)1
00,
By the general formula for the inverse of a partitioned matrix,

Al = { P :DAIQAQ_21 1 }
—Ayy AnD Ay A DA AL |
where D = (AH — A12A521A21)_1, we find that
1 1
I, = ———— > ~-.
(D)1 a—bTA-1b — a

THEOREM 2.4.7. (Order-s exponential family). Suppose that

p(xﬁ)=eXp<Zm(9)Ti(w)—B(9)>h(%), 0€Q

is an order-s exponential family parameterized by
0 =EyT
and that n () contains an open subset of R®. Then, if C = Cov(T'), we have
I1(0)=0C""1 and  I*(n)=C.

PROOF. By theorem 1.3.14 of chapter 1, we know that for n € int(N)

0*A DA? 0?A 1’
= cov(T;,T;), cov(T) = IndnT = [ ]

on;on; on;0n;

ij=1
We also know that if w(x,n) is the canonical form of the density
dlogm(z,n) dlogn(x,n) 0A 0A
ni nj i 77]
. 9*A
1 (77) = COU(T) = W
0A /O
Moreover, 0 = EyT = g—‘s = e , and hence by the reparameterization formula
A/ On;
. 0*A 0?A
I*(n)

- ﬁnanTI(Q) onon™
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But the left hand side is B 8AT (a symmetric matrix) and hence

2A 1! -
““:{W} —¢

i

REMARK 2.4.8. Note that for a random sample of size n from p(z, ), the CSS is
O-Ti(X5), ..., > Ts(X;)), and the new “A” function is nA(n).

Examples of Information Matrices.

EXAMPLE 2.4.9. X ~ N(£, %), € € R®, ¥ fixed and non-singular. Then

_ 1 I Y
p(z,§) = (\/ﬁ)ﬂdetml/?ew{ S =& X (= 5)}
Writing ¥ = [UU]”, »-t [%]] we have
dlo i
aggp(X, §) = Z%k(ﬂﬂk — &)
5’logp
afj Z%m Tm m
dlo 810
! k=1 m=1
= Z Z YikOkm Ymj
k=1 m=1
=yley!
=»1

EXAMPLE 2.4.10. The order-two exponential family {N({,0)}, £ € R;o0 > 0}.
1

* _ iy (2—8)?
Ig — 6 20
p ( @ZJ) 0\/%
V2T

where ¢ = [ g ] By Theorem 2.4.7, if we let
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then we can rewrite p*(z,v) as

p(@,0) = —==cap {m(0)z + m(0)2” — B(0) }

1
Vo
andsinceEg[))((Z}:é’:EgT,T: [))((2},

1(9) = [Cou(T)]™

o? 20%¢

where Cov(T') = [ 20% 200 + 40%¢

} (check from MGF).

We can now find I*(¢)) from the reparameterization formula,

() = JI0)J"

90 .. 00
O 01

where J = : : :[(1) 35], :{2£21-
o0 .. o6 o o
s OYs

W) = <J71>T[*1(0)J*1 where J ! = [ (1) 1/52/5 1

1 0 o? 20%¢ 1 —¢/o
| =¢Jo 1/20 2026 20" + 4o%E? 0 1/2¢
e 0

0 o%/2

2
I (& o) = 1/00 2/002 } (could also be obtained directly from p*)

EXAMPLE 2.4.11. Location-scale families.
Suppose that f is a probability density with respect to Lebesgue measure, that f(z) is
strictly positive for all x and that

T —

1
p(z, p,0) = —f( ), LER, 0 >0.
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Then

8logp(x o) = _lf’(%)
o T e f(EE)

8logp 1 z—puf(5H)

O o2 f(x;:)
o= (42 e
< () o
tine)= 5 f (155251 ;;> L
- L[ (1+29) s
0= | Gy 5 +;/$;“(§’£§3)?fﬁ;“>d

0+—/ <f;”) f(x)dz

Thus [ is a diagonal matrix if f is symmetric about 0. Example 2.4.9 is a special case of
this.

When the CR bound in theorem 2.4.3 is not sharp, it can be improved by using higher
order derivatives of ¢. This is the content of the following theorem.

THEOREM 2.4.12. (Bhattacharya bounds) Suppose p(x,0) have common support for
any 0. Let T be unbiased for g(0). Further assume

/T(w)ggip(az,é)u(dx) —g(0), i=1,. .k

and
o' .
/ amp(x,@),u(dm) =0,1=1,...,k
Then
_ T
Varg(T) > [¢V(0),...,g" @] V" [¢V(0), ..., 9" (0)]
. T

where V. = Cov {(p(x 7 56 p(z,0),..., (;’9) %p(w,@)) ], and V is assumed to be non-

singular.
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ProoF. This follows immediately from theorem 2.4.1 by taking

1
(2.0) = —
il 0) = 5y i

(x,0), 1=1,...,k
giving
Vi = Cov(T, ;) = E(T);)

- / T(x) gé):p(% )u(dx) = g (6).

g

EXAMPLE 2.4.13. X3,..., X, iid Poisson(f), § > 0, and ¢g(§) = ¢7% = P(X; = 0). Then
Iy(X) is unbiased for g(f). Here

1
p(gj’ (9) = @_”9+(in)10g9 H — 6 > 0’
ZI;!

is an exponential family of full rank so T'(X) = > X, is complete and sufficient. So the
UMVU estimator of g(0 is E [Io(X;)|T(X)] and

so (1 — 1T s UMVU.

Noting that 7'(X) ~ P(nf), we can write its probability generating function as Ez7X) =
e~"(1-2) and hence

1

Ey(1— E)T(X) =e? and
1

Ey(1 = )" = exp(=nf(1 — (1= 1/n)?))

20+
1
s Varg(l — =) = 6729(6% —1).

n

For this problem CRLB = 22 where g(6) = e~ and

nl1(0)’
X\° 1
—260 2
CRLB = O < 6_29(6% 1) — 6_29(€ + 10_ )
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(Alternatively T is the CSS for a full-rank exponential family with Ey(T") = 0, so 1(0) =
#rgT = % = n]1(49))

The Bhattacharya bound with k = 2,

o | =1 ]

_lop 0 B >
¢1($,9)—§%—6910gp——n+ 7
10 07 Lop, > Sy )
vl 00 =5 = ggr oer+ Qg = T T )
0 0
COUelp(Xa ‘9): |:né 2n2/82:|

Hence the Bhattacharya bound is

0 n/6 0 —e™ Y
VQTQTZ[—€6€6]|: é 2n2/92][ }
0 62

_ 20"
=e (n+—2n2)>CRLB

but less than VaryT. By taking more derivatives the bound can be make arbitrarily close
to VaryT. Extends to the multiparameter case also.



CHAPTER 3

Equivariance

3.1. Equivariance for Location family

In chapter 2 we introduced unbiasedness as a constraint to eliminate estimators which
may do well at a particular parameter value at the cost of poor performance elsewhere.
Within this limited class we could then sometimes determine uniformly minimum risk
estimators for any convex loss function. Equivariance is a more physically motivated
restriction. We start by considering how equivariance enters as a natural constraint on
statistics used to estimate location parameters.

Suppose X = (X,...,X,,) has density
fl@=&=f(r1—-& - zn—§)

where f is known, ¢ is a location parameter to be estimated and L (¢, d) is the loss when
¢ is estimated as d. Suppose we have settled on 7' (x) as a reasonable estimator of £ as
measured by

R(&T) = Ee (LT (x)))
Suppose another statistician B wants to measure the data using a different origin. So
instead of recording X1, X, -+, X,,, B records X| = X; +273,--- , X! = X,, + 273 say

(This would be the case if we measured temperatures in °C and B measured them in °K.)
Then

(3.1.1) X' =X +a.
On the new scale the location parameter becomes
(3.1.2) f=¢6+a

and the joint density of X' = (X7,---, X)) is
fla=&)=f@—&- 2, = ¢).

The estimated value d on the original scale becomes

(3.1.3) d=d+a

on the new one and the loss resulting from its use is L (¢,d’). The problem of es-
timating ¢ is said to be invariant under the transformations (3.1.1),(3.1.2),
and (3.1.3) if

(3.1.4) L(¢+a,d+a)=1L(&,d).
This condition on L is equivalent to the assumption that L has the functional form,
56
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L& d)=p(d=¢)

for some function p. This is called an invariant loss function.

Suppose we chose T (X) as a good estimator of ¢ in the original scale. Then since

estimation of ¢’ in terms of X7,---, X is exactly the same problem, we should use
T’(Xif" ,X/) :T(X1,“' 7Xn)+a

n

as our estimator of ¢ =&+ a. If
T(Xi+a,-, Xp+a)=T (X1, ,X,) +a

then we say that the estimator T is equivariant under the transformations
(3.1.1),(3.1.2), and (3.1.3) or location equivariant. Let £ denote the class of all
equivariant estimators.

REMARK 3.1.1. The mean, median, weighted average of order statistics (with Y w; = 1)
and the MLE of £ for the family f (z — &) are all location equivariant.

THEOREM 3.1.2. If X has density f (x — £1) with respect to Lebesgue measure pn and T'
s equivariant for & with loss

L(gd) = p(E—d).

Then the bias, risk and variance of T are independent of €.

PrOOF. We give the proof for the bias. The other proofs are similar.
b(§) = ET(x)—-¢
- [T@ -9 @-)ulde)

= /(T (x+£€1) —¢) f (x) p(dx) by shift-invariance of p

= BT (X')—¢
= E(T'(X)+¢§) ¢
— ET(X).

O

REMARK 3.1.3. Since the risk of an equivariant estimator is independent of 6, the de-
termination of a uniformly minimum risk equivariant estimator reduces to finding the
equivariant estimator with minimum (for every 6) risk - such an estimator typically ex-
ists - and is called a minimum risk equivariant (MRE) estimator. Our first step is to find
a representation of all location equivariant estimators (Just as we found a representation
of all unbiased estimators in Chap 2)

LEMMA 3.1.4. If Ty is any location-equivariant estimator then
(3.1.5) T is equivariant <= T (x) =Ty () — U (x)
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where U (x) is any function such that

(3.1.6) U(x+al)=U(x) for al x and a.

PROOF. If T is location-equivariant, set
Ulx)=Ty(x) - T (x).
Then
U(+al) = To(x+al)—T(x+al)
To(x)+a—T(x)—a
= U(x).
Conversely if equation (3.1.5) and (3.1.6) hold, then
T(x+al) = Ty(x+al)—U(x+al)
= Ty(x)+a—-U(x)

= T(x)+a.
[
LEMMA 3.1.5. U satisfies
U(x+al)=U(x) for all x and a

if and only if

Ux)=v(x) —2p, - ,Tpn_1 — x,) for some function v.

PROOF. «)
U@+al)=v({(z1+a)— (zpn+a), - ,(xn1+a)— (x,+a)=U(x).

=) Choosing a = —x,,, we have

U(:B):U(:B—i—al) = U('xl_mn?‘.'axnfl_xna())

= U(xl — T, 3 Tp-1 _xn>

Combining these two lemmas gives the following theorem. OJ

THEOREM 3.1.6. If Tjy is any location-equivariant estimator, then a necessary and suf-
ficient condition for T to be equivariant is that there is a function v of n — 1 variables
such that

T (x) =Ty (x)—v(y) for all x,

where Yy = (T1 — Tpy -+, Tpo1 — Tp)-

ExAaMPLE 3.1.7. If n = 1, then only equivariant estimators are X + ¢ for ¢ € R.

Now we can determine the location-equivariant estimator with minimum risk.
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THEOREM 3.1.8. Let @ have a density function f (x — 0) with respect to Lebesgue measure
and let y = (yy,--- ,yn_l)Twhere Yi = T; — T,. Suppose that the loss function is given
by L(0,d) = p(d—0) and that there exists an equivariant estimator Ty with finite risk.
Assume that for each y there ezists a number v (y) = v* (y) which minimizes

(3.1.7) Eo(p(To (X) —v (Y)Y =y)
then there exists an MRE estimator T™ of 6 given by
T (x) =To (x) —v" (y).

PrROOF. If T is equivariant then
T(X) =Ty (X) v (Y)
for some v. So to find the MRE, we need to find v to minimize
R(0,T) = Ep(p(T —0))
and we calculate:
RO, T) = Eo(p(To(X)—v(Y)—10))
= Ey(p(To(X)—v(Y))) by theorem (3.1.2)

— /Eo (p(To (X)) —v (Y)Y =y)dPy (y)

> [ Bl (T (X) =" (Y)Y =9)dR ()
= R(0,T%).
The risk is finite since R (0,7%) < R (0,7,) < oo by assumption. O

COROLLARY 3.1.9. If p is conver and not monotone, then an MRE exists and is unique
if p is strictly convex (under the conditions of theorem (3.1.8)).

PROOF. Let
¢(c)=E(p(TLH(X)-0|Y =y)
and apply theorem (1.4.2). O

COROLLARY 3.1.10. The following results hold:

1) pd=0)=(d-0° = v (y)=E(TH(X)|]Y =y)
(2) p(d—0)=|d—10 = v* (y) =med, (15 (X) |Y = y)

PROOF. (1) Eo (p(To (X) =) |Y =y) = Ey ((Tn(X) — o)’y = y) is mini-
mized at ¢ = Ey (1o (X) |Y = y).
(2) Eo(|To (X) —¢] |Y = y) is minimized at ¢ = med, (To (X) |Y = y).
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EXAMPLE 3.1.11. MRE’s can exist also for non-convex p. Suppose p is given by

1 i ld-6>c
pld—0) _{ 0 otherwise,

where ¢ is fixed. Then for n = 1, using Ty (X) = X, v will minimize

Eop (X —v)=F (| X —v| > ¢)
if and only if it maximizes
Py (| X —v| <c).
If f is symmetric and unimodal then v* = 0 and hence
To (X) — 0= X is MRE.

On the other hand if f is U-shaped, say f(x) = (2 4+ 1) [|_r ) where ¢ < L, then
P(X—=v|<e)=FR(v-—c< X <v+c)

is maximized at v +c¢ = L and v — ¢ = —L. Thus there are two MREE’s, X — L + c and

X+L—-c

EXAMPLE 3.1.12. Let X1,---, X, be iid N (u,0?) where o2 is known. Because X is

complete sufficient and Y = (X; — X,,,---,X,,_1 — X,,) is ancillary, Ty (X) = X is
independent of Y. Therefore, by minimizing the expression (3.1.7), we find that

v* (y) = argmin Ej (,0 (7 — v)) .
If p is convex and even, then ¢ (v) := Eyp (Y—v) is convex and even. Therefore,
v* (y) = 0 and X is MRE. (X is also MRE when p is the non-convex function of Example
3.1.11.)

THEOREM 3.1.13. (Least favorable property of the normal distribution) Let F be the
set of all distributions with pdf relative to Lebesque measure and with variance 1. Let
Xy, , X, be did with pdf f(x — &), where £ = EX;. If r, (F) is the risk of the MRE
estimator of & with squared error loss, then r, (F) has its mazimum value over F when
F is normal.

PROOF. By the previous example, the MREE in the normal case is X with corre-
sponding risk,
— 1
= B X = ~.
— n —
However, X is an equivariant estimator of £ for all F' € F, and the risk of X is
— 1
B (X —¢)’==, forall FeF.
n
Therefore, we must have
o (F) <

S|

, forall FFeF.
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REMARK 3.1.14. From corollary (3.1.10), the MRE in general in the previous theorem is
X-E(X|Y=y).

But for n > 3, Ej (7|Y = y) = 0 if and only if F' is normal (Kagan, Linnik, Rao (1965,
1973)). So the MRE for n > 3 is X if and only if F' is normal.

EXAMPLE 3.1.15. Let X4, ---, X, be iid with

1—e @0/ 4 >9
F(x):{ 0 :I;<_9

where b is known and 6 € R. Then Ty = X(y) is equivariant, complete and sufficient for
0 (CHECK) and Tj is independent of the ancillary statistic

Y: (Xl—Xn, 7Xn—1_Xn) — (Xl—e—(Xn—0>, ,Xn_1—0—<Xn—6))
Therefore X(;) —v* is MRE if v* minimizes

Eop (X(l) - U) .

(In general we have to minimize Ey (p (Ty — v (y)) |Y = y) for each y by Theorem 3.1.8
but here the complete sufficiency of Ty and the ancillarity of Y implies that v* (y) is
independent of y since the distribution of Tj is the same for all y.)

We now consider some special cases:

(1) It p(d — 0) = (d — 0)°, then v = Ey (X(1)) = b/n so that MRE is X(;) — 2.
(2) If p(d—6) = |d — 6], then v = medy (X1)) = blog2/n so that MRE is X(;) —
blog2 - (Because Fx, () =1- e~@=0n/b = L implies (z — 0) n/b = log2.)
(3) If
1 if |d—-6] >¢,
pld—0) —{ 0 if [d—0] <c,
then v is the center of the interval I of length 2¢ which maximizes F, (X(l) € ])
so that v = ¢ and the MREE is X(;) — c.

THEOREM 3.1.16. (Pitman Estimator) Under the assumptions of Theorem 3.1.8, if
L (67 d) = (d o 6)2?
Juf(xy—u, -z, —u)du

T =
[flz—u,-  z, —u)du

is the MREFE of 0.

REMARK 3.1.17. This coincides with the Bayes estimator corresponding to an improper
flat prior for the location parameter. (i.e. the conditional expectation of © given X = x
under the assumed joint "density" f (x — 1) of X and ©.)

PrOOF. Corollary (3.1.10) implies
T (X)=Ty(X)— Ey(T0]Y),
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where T is any equivariant estimator. Let Ty (X) = X,,. Because

Y 1 oo 0 —1 X,
v,. | lo -1 =1 x|’
X, 0 - 0 1 X,

we have

i v W1, s Yn1,Tn) = fxye X0 (V1 F Ty Yne1 + Ty )

and
Bo(X, ¥ =y) = Lot b o o)da
[+, ypr +x,2)de
Joef(ri—an+z,-  2p —2p +2,2)d
Tf—an+ @, pg — T+, 2) da
Juf (e —u,- xn 1 —u, 2, —u)du
s T me —w, —w)du
Substituting in the expression for T completes the proof. 0

EXAMPLE 3.1.18. Suppose f(x) = Ii_1/21/2) () and Xi,---, X, are iid with density
f (3: — 9) = [(971/2’9+1/2) (x) Then

1 if — 1<y and 2, <
. — 2 = (1) (n) =
oo ) { 0 otherwise,

N

and ) )
1 fu—=s<zmpand zp) <u+ 2
_ — 2 = 4(1) (n) = 2

f @ —ul) { 0 otherwise,

Therefore, since x¢,) — z() <1,

* _ LTn)~3
I (z) = fiiffff s
e +3)" - (@w—-3)°)
B (1) = T(w)
= %($<1>+1‘<n>)

REMARK 3.1.19. (UMVU vs. MRE)

e MRE estimators often exist for more than just convex loss functions.
e For convex loss functions MRE estimators generally vary with the loss function
(unlike UMVUE’s).
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e UMVUE’s are frequently inadmissible (i.e., there exists an estimator with uni-
formly smaller risk). The Pitman estimator is admissible under mild assump-
tions.

e The principal application of UMVUE’s is to exponential families.

e For location problems, UMVUE’s typically do not exist.

e An MRE estimator is not necessarily unbiased. The following lemma examines
this connection.

LEMMA 3.1.20. Suppose L (d,0) = (d—0)?, and f(x —01), 0 € R, are densities with
respect to Lebesque measure.

(1) If T is equivariant with bias b, then T — b is equivariant, unbiased, with smaller
risk than T

(2) The unique MRE estimator is unbiased.

(3) If there exists an UMVU estimator and it is equivariant, then it is MRE.

PROOF. (1) It is clear that T — b is equivariant and unbiased. For the smaller
risk part,
RO, T-b)=R(0,T—b) = E (T —b)?=VarT < E, (T?) = R(0,T) = R(6,T).
(2) The MRE estimator is unique by corollary (3.1.9). It is unbiased by (1), other-
wise its risk could be improved by using the equivariant estimator 7" — b.
(3) The UMVUE is the unique MR estimator in Y. If it falls in £ it is the MR

estimator in U N E. But the MREE is the MR estimator in U N & since it is
necessarily unbiased. Hence they are the same.

U = {unbiased estimators of zero}, & = {equivariant estimators}.

DEFINITION 3.1.21. An estimator T of g (0) is risk-unbiased if

EgL (0, T) < EoL(0',T) for all § #£6'.
i.e. T is “closer” to g (0) on average than to any false value g ().
EXAMPLE 3.1.22. (mean unbiasedness) If L (6,d) = (d — g (#))* and T is risk-unbiased,
then

Eo(T —g(0)? < Ep(T—g(#))° forall 0 £6.

This means (assuming that EyT? < oo and EpT € g (Q)) that Ey (T — g (#))? is mini-
mized by g (0') = EyT.
Hence g () = EyT for all § i.e. T is unbiased for g in the sense defined in chapter 2.

EXAMPLE 3.1.23. (Median unbiasedness) If L (6,d) = |d — g (0)| and T is risk-unbiased,
then
Eg|T — g (0)] < Eg|T — g (¢)] for all 6 #£ 6.

But the right hand side is minimized when ¢ (6") = medyT".
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Hence
(3.1.8) g (0) = medyT for all 6.

(assuming that FEy|T| < oo and there exists a medyT" in ¢ (Q2) for all §.) An estimator
satisfying equation (3.1.8) is said to be median-unbiased for g (6).

THEOREM 3.1.24. Suppose X has density f (x — 601) with respect to Lebesque measure.
If T is an MRE estimator with L (0,d) = p(d — 0) then T is risk-unbiased (for 0).

ProoOF. By Theorem 3.1.2,
Eop (T —0) = Eop(T).

If 0 # ¢, then T — ' is equivariant and by definition of MRE, we have Eyp (1) <
Eop (T —0') for all ¢

= Eop(T) < Ep(T—6¢ —0) forall ¢

=  Ewp(T) < Ep(T—-0¢) forald

= Ep(T—0) < Epp(T—¢) foralld.

3.2. The General Equivariant Framework

Notation

X: data.

): parameter space.

P:={F: 0€Q}.

G: a group of measurable bijective transformations of X — X.

REMARK 3.2.1. The operation associated with the group G is function composition. i.e.
f9(@)=fog(x)=[(g(x)).

DEFINITION 3.2.2. We say that g leaves P invariant if for all § € €2, there exists 0’ €
such that

X ~PFP = gX ~ Py
and there exists 6* € () such that

XNPQ* :>gXNP9

If C is a class of transformations which leave P invariant then
GC)={9'9y" -9y : 9:€C,meN}

is a group (the group generated by C), each of whose member leaves P invariant.
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If each member of a group G leaves P invariant we say that G leaves P invariant. If G
leaves P invariant and Py # Py for 6 # 0’ then there exists a unique 6’ € 2 such that

X ~Fy = gX ~ Py.
This defines a bijection g : 2 — €1, via the relation
g(0)=90".
where Py is the distribution of g (X') under 6.
DEFINITION 3.2.3. Under the preceding conditions we define
G:={g:9€G}.
It is clear that G is also a group.

REMARK 3.2.4. For g € G,
Eypf (9X) = Eg0)f (X)

since

Eof (¢X) = / /(g (x)) Py (dz)

Equivariant Estimation

Let T': X — D be an estimator of h (6). Instead of observing X, suppose we observe
X'=g(X),

where X' is a sample from Pj). Suppose that for any g € G, h(gh) depends on @ only
through h (0), i.e.

(3.2.1) h(6h) =h(02) = h(gbi) =h(gb).
Then we denote
g*h (0) = h(g0).
It is clear that
G ={g :g€g}
is a group and each ¢g* is a 1 to 1 mapping from H = h () to H.
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DEFINITION 3.2.5. Under the conditions prescribed for existence of the groups of map-
pings G and G*, if
(3.2.2) L(g0,g9"d) = L(0,d) for all g € G,

then we say that L is invariant under G. (g if we remove ’for all g € G’). If conditions
(3.2.1) and (3.2.2) hold, we say that the problem of estimating h (¢) is invariant
under the group of transformations G (under g if we remove “for all ¢ € G”). An
estimator 7' (X) of h () is said to be equivariant under G if

(3.2.3) gT(X)=T(9X) forall g € G.

If (3.2.2) and (3.2.3) hold and 7" (X)) is a good estimator of i (#) based on X then T (¢ X)
will be a good estimator of g*(h (#)) based on g(X).

EXAMPLE 3.2.6. (Location parameter) Let h () =6 and g (X) = X + a.
X =X +al
X+a~PFPy, 606—-g0=0+a
h(gd)=0+a g"(h(d)) = h(0) + a.
Then, the problem of estimating 6 is location-invariant if
L(g0,g"d) =L (0 +a,d+a)=L(0,d).
An estimator of h(6) is equivariant if
T(X +al) =T(X) +a,
e.g. X1, median(X), n=' 3" | X;, etc.

THEOREM 3.2.7. If T is equivariant and g leaves P invariant and
L(0,d)=L(g0,9°d),

then
RO, T)=R(g(0),T) forall,
where
R(0,T):= EaL(0,T (X)) .
PROOF.
EyL(0,T (X)) = EgL(g(9),9"T (X))

= EyL(g(0).T(9(X)))

= EyoLl(9(0).T (X))

= R(g(9).T)

O

COROLLAIEY 3.2.8. If G is transitive over ) (i.e. if 61,05 € Q and 0, # Oy then there
exists g € G such that g (01) = 0) then R (0,T) is constant for every equivariant T.
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PROOF. Fix 0y € Q0. If § # 0y, there exists g such that g (6y) = 6. Hence
R(00,T)=R(g(0o),T)=R(0,T).

O

REMARK 3.2.9. P = {F: 0 € 1} is invariant relative to a transitive group of transfor-
mations if and only if P is a group family (see TPE section 1.4.1). These are families
generated by subjecting a r.v. with fixed distribution to a group of transformations. We
can then index P using G. Thus

where 6 = G ().

THEOREM 3.2.10. Suppose G is transitive and G* is commutative. If T is MRE, then T
is risk unbiased.

PROOF. Let T'be MRE. For 6 # ¢, there exists g such that g (6") = 6. Consequently,
Ey(L(9,T (X)) = EL (7" (9),T(X))
> EyL(6,T).

(In the 2nd equality, note that if T' is equivariant then so is ¢*T', since letting h* € G*,
we have

h*g*T = g*h*T = ¢*T (h),
by commutativity.) The inequality then follows because T" is MRE. [l
EXAMPLE 3.2.11. Suppose X ~ N (u,0?), 0 = (i, 0%), and we want to estimate h () = p.

(1) Let Gy = {g: gr =z + ¢, c € R}, then P is invariant under G;. Tx = x + ¢,
c € R, are the only equivariant functions since

T(x+a)=T(z)+a foralla

T(z+a)-T(z) _ 1

= for all a

= T (z)=1
= T(zx)=x+c.

(a) Suppose L (d,0) = (d — p)* /o? (squared loss function measured in units of
o). Then X is MRE under Gy, i.e.

(X —p)’

EyL(0,X) = By
=1

T _ )2
= min {EO# : T equivariant with respect to Ql} .
o
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Because
9 ((n,0%) = (n+c0?),

G, is not transitive and X is not risk unbiased. To see this, for 6 fixed
choose ¢’ = (u,100?), whence

X—p? 1
E=w L prex) =1

E,L(0.X)=E —
oL (0, X) = Ey 1002 10

Here, G, is not transitive since there exists no g such that g(u, 1002) =

g(p,0%).
(b) Suppose L' (d,0) = (d — p)*. X is MRE and risk-unbiased since

EoL' (0, X) = Eg (X — 1)’ > Ep (X — pu)? for all 0 £ 6.

G, transitive is therefore not necessary in theorem (3.2.10)
(2) Let Go ={g: gr =ax+c,a>0,c€R}. Then, Gy ={g: g(u,0?) = (au + c,a®c?)}
since gX ~ N (ap + ¢, a’0?). Also h (0) = psothat h(g(0)) = h(au + c,a’c?) =
ah (0) + ¢ . Thus,

g*h(0) =ap+cand G5 ={g": ¢" (d) =ad+c}.
P is invariant under G, and T (z) = x is equivariant under G since
Tgr =T (ax+c¢)=ar+c=g" (T (x))

and
g (Tz) = g"(x) = ax + c.

X is MRE under G; C G, and is therefore MRE under Gy. (There exist
no Gi-equivariant estimators with smaller risk so there exist no Gs-estimators
with smaller risk since Gs-equivariance is a more severe restriction than G-
equivariance.) But X is not risk unbiased with respect to L (d,0) = (d — p)* /o>
. G, is transitive in this case but Gj is not commutative. So, theorem (3.2.10)
cannot be applied here.

3.3. Location-Scale Families

Suppose

o o

X:(Xl,"',Xn)TNO-_n (rrl_luj.”73771_1u)7
where f is known. The density is with respect to Lebesgue measure and
0= (uo0)eN=RxR",

where p is the location parameter and o is the scale parameter.



3.3. LOCATION-SCALE FAMILIES 69

Estimation of p. Our first objective is to estimate the location parameter. Suppose
X=R" Q=RxR", D=R.
Define g, : R" — R" by
Gap () = (az1 + b, -+ ,ax, + ).
Then g,, : 2 — Q is defined by
Gap (0) = (ap + b, a0)
and g; , : R — R is defined by
O (d) = ad +b.
since g*h (0) = g*p = h(gf) = ap + b.
LEMMA 3.3.1. L(0,d) is invariant under G if and only if

L((u,a>,d>=p(d‘“)

g

(i.e. if L is a function of error measured in terms of o).

PROOF. «=) If p (££) = L((y,0) , d), then
L(g0,9°d) = L((ap+b,a0),ad+b)

(ad—i—b—a,u—b)

L(#,

d— u _d=y
0—/

=) We need to show if u,0,d and p/, o', d’ satisfy

LKM@N@ILGMULJ%
But this holds since
d= C%d’ +u— g,u’

o= %0
g
po=gu +p— g
and L is invariant under this transformation by assumption. [

Now observe that P is invariant under each g € G (check!)
T is equivariant <= ¢'T (x) =Tg (x)
<— al'(x)+b=T(ax+D).

Since G is transitive (given any (1, 0) we can find a,b such that (ap + b,a0) = (¢, ")),
every equivariant estimator of u has constant risk by corollary (3.2.8).
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PROPOSITION 3.3.2. If Ty is an equivariant estimator of p and 61 # 0, and if
0 (aX +b) =aé; (X) foralla>0,beR
then T is equivariant if and only if
T(X) =T (X) - W (2) 8 (X)

for some W where

Xl - Xn Xn—2 - Xn Xn—l - Xn
Z = (Zy,- - Zn—azn— = ) ) .
( b ’ 2 1) (Xn—l - Xn Xn—l - Xn |Xn—1 - Xn|)

NOTE 3.3.3. (1) We have assumed that X; # X for all i # j. This is ok since
{X : X, = X for some i # j} has measure 0.
(2) Z is ancillary for p so if T'is a function of a CSS then T is independent of Z.

PROOF. (1) T is equivariant (i.e. T (ax+b) = ol (x) +b) < U = Tg—lTO
satisfies U (ax +b) = U (x) for all @ > 0,b € R. (check the details - simple

algebra)

(2) U = Tg—lTO =W (Z) for some W then it is easy to see that U (ax +b) = U (x)
and hence by (1), T is equivariant.

(3) If T is equivariant then U (ax + b) = U (x) for all a > 0, b € R. Setting

1 X,
aq|g= - b: T <
|Xn—1 _Xn| |Xn—1 _Xn|
X1 —Xn Xn—l _Xn )
SUX) = Uf—t—2n 0 ZnlZan g
( ) (|Xn—1 - Xn| |Xn—1 - Xn|
= U (ZIZn—la ey Zn—QZn—la Zn—la O)
= V(Zl,...,Zn_l).

O

THEOREM 3.3.4. Suppose Ty is equivariant with finite risk and 61 and Z are as defined
in Proposition 3.3.2. If

Eo) (p(To (X) =W (Z) 61 (X)) |Z)
is minimized when W (Z) = W* (Z) then
T(X)=Ty(X)—-W"(Z) (X)

is MRE.
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PROOF. For any equivariant 7' = Ty — W (Z) 4y,

R ((O, 1) ,T) = E(O,l)p (%)

= B (Eoy) (0 (To (X) =W (2)6:(X))|2))
> Ey (B (p(To (X) = W*(2) 61 (X)) |2))

= Eounp (T7)
= R((0,1),77).
Since every equivariant estimator has constant risk, 7* is MRE (for all 6). Il
EXAMPLE 3.3.5. Suppose X1, -+, X, are iid with common pdf with respect to Lebesgue
measure,
1 T — [ I
- = e T Iy
() = e Pl @)
and

L((u,a>,d>=p(d;“) - (d;“)g.

Let TO - X(1)7 61 (X) = Z?:Q (X(’L) - X(l))) ZZ - s (Z - ]-7' ,n — 2)7 Zn—l =
anlen
‘Xn—l_Xn‘.

We first show that Tp, 01, and Z are independent (see TPE example (2.2.5)). (X(l), 51) is
complete sufficient for (i, o) and Z is already ancillary so that (X(l), 51) is independent
of Z by Basu’s theorem. Also nX(y, (n—1) (X(Q) — X(l)) s Xy — X(n—1) are iid
E (1) so that X(y) is independent of

0 = (n — 1) (X(g) — X(l)) +---+ (X(n) — X(n,l)). Thus, X(l), 01, and Z are independent.

Consequently,
Eq (To (X) =W (2) 6 (X))*|Z)

= EonI¢ —2W (Z) Ep1ToEo101 + W (Z)? E1)03
is minimized with respect to W (Z) if W (Z) = W* (Z) where

E1)ToE (0,101
E((],l)(S%

W*(Z) =

since ; ~I'(n — 1,1).
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Hence the MRE estimator of p is

n

1

T =Ty = W' = X0y — — > (X — Xoy) -
i=2
NoOTE 3.3.6. (1) T* is not unbiased and the bias depends on o since

EunT"(X) = EoenT" (0 X +p)
= U + O'E(O’l)T* (X)

1 n—1
n n

(2) Because

T — 0\
R0, T") = E<0,1>( )

1
1\2
— (ﬁ) =+ Var(o 1)T s
where
. 1
Var(o,l)T = Var(071)X(1) + ﬁ\/ar(m)él
1 n—1
T T
we have
. n+1
R(0,T") = 5

with corresponding

R (9, T) - E(071)T2

1 on-l L1

on2 o2 (n—1)° Cn(n—1)
n+1 .

> 3 =R(6,T7).

Estimation of " for some constant . Assume L (0,d) = p (%) and P is invariant
under G = {g: gz = ax + b}. Define g,; : R* — R" by

Gap (x) = ax +b=(axy + b, -+ ,ax, +b).
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Then g,, : 2 — Q is defined by
o (0) = (app + b, a0)

and
Gosh (0) = h (G, (0) = a’o” = a"h (0)
,where
h(0) =h((p, o)) =0
Thus,

gZ,b (d) = a"d.

We can check invariance of loss function (i.e. L (g0, g*d) L (0,d)) since

L(§9,g*d)=p(ard> =p<d> =L (6,d)

a"o” ;
as required. Thus, the condition for equivariant of 7" is
T(g(x)=97T(x)
or
T(ax+b)=a"T (x).

PROPOSITION 3.3.7. Let Ty be any positive equivariant estimator of o”. Then T is equi-
variant if and only if

T(X)=W(Z2)T(X)
for some W, where Z is defined in proposition (3.5.2) .

PrROOF. If T'=W (Z) Ty (X)), then
T@X+0b) = W(Z)a"Ty(X)

= dT(X).
Conversely, if T' is equivariant, then
T(X)
U(X):=
(X) Ty (X)

satisfies U (aX +b) = U (X) foralla > 0, b € R and so by part (3) of proof of proposition
(3.3.2),

U(X)=W(Z)
for some W. O

THEOREM 3.3.8. Let Ty be a particular equivariant estimator of o™ with finite risk. Sup-
pose

Eoy (p(W(2)To (X)) |Z)
is minimized when W (Z) = W*(Z). Then
™ (X) =W (2)To (X)
s MRE.
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ProOOF. If T is any equivariant estimator then
R, T) = R((0,1),T)
= Eonp (W (2)T)(X)
= Eoy (Eony(p(W(Z

~— ~—

> E(Ol)( y (p(W*(2) 0(X))|Z))
= FEpunp (T )
= R(6,T7).
Ul
EXAMPLE 3.3.9. Let X, -, X,,be iid with density %e_(x_“)/(’[(“’oo) () and suppose we

wish to estimate o by minimizing the risk under the (invariant) squared fractional error

loss function,
d d ?
L((p,0),d)=p (—) = (— — 1) .
o o

n n

To(X) = |Xi—Xo| =D (Xo) — X))

i=1 i=2
which is independent of Z (by the argument in example (3.3.5).)

Let

Now, noting that Ty is equivariant (7" (aX +b) = aT (X)), by Theorem 3.3.8 we need
to minimize

o (p(W(2)Ty(X)|Z) = Eon (W (2)Ty(X) - 1)°|2)

= W(Z)Eo (To(X)*|Z) —2W (Z) Ey (To (X)|Z) + 1

which is minimized for
« Ep (Th (X)[Z) Eo)To (X) n—1 1
W (Z)=W*(Z) = (0,1) . _ =01 - = o=
E(O,l) (TO (X) |Z) E(0,1)T0 (X) (” - )” n

Hence,
* * 1 -
T™(X) = W(2)T(X)==>  (Xo - Xu)
i=1
is MRE.
NoTE 3.3.10. (1) Once again we notice that the MRE is biased:

n—1

E(MU)T* (X) - l?(o,l)ir’>|< (UX + ,U) = O'E(O,l)T* (X) =0 7& o.

n
(2) The UMVUE is (TPE example (2.2.5)):

1
> (Xo—Xw)-

n—1
=1

T(X)=
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Scale Equivariance
For the special case when only the scale paramter o is unknown, i.e., the density of the
sample consitutes a scale family:
X = (X1, X)) ~of (ﬂ’ 7@),
o o
see the discussion culminating in Theorem 3.3 in TPE. The summary points are as follows.

Estimand: h(0) = o".
Invariant loss function: L(0,d) = p(d/c").
Equivariant T satisfies: T'(aX) = a"T(X).
MRE T*(X) of h(f) is then found as follows:
— let Ty be equivariant for ¢” with finite risk,
— define

Z:(Zl>"' aZnth):<

Xn
- e (35) ]

& anl Xn
Xn’ 3 9

— find

— and finally
~ T(X)

T(X) = gy




CHAPTER 4

Average-Risk Optimality

Thus far we have focused on finding estimators 7' which minimize the risk R (0,7 at
every value of . This was possible by restricting the class of estimators to be either
unbiased (Ch. 2) or equivariant (Ch. 3). We now drop these restrictions, thus bringing
all estimators into play, but will therefore have to sacrifice uniform minimum risk for
other optimality criteria which make R (6,T) small in some overall sense. Two specific
versions of this type of alternative optimality are:

e minimize (weighted) average risk, which leads to Bayes estimates, e.g., hierar-
chical Bayes and Empirical Bayes, and is discussed in detail in TPE Ch. 4.
e minimize mazimum risk, which leads to minimax estimates, is discussed in

detail in TPE Ch. 5.

4.1. Bayes Estimation

The main factor contributing to the recent explosion of interest in Bayes estimation is
its ability to handle extremely complicated practical problems. Some other factors which
make Bayes estimation attractive are as follows.

(1) The mathematical structure is very nice.

(2) Tt permits the incorporation of prior information (although there is a lot of
debate about how this should be done).

(3) Tt provides a systematic approach to the determination of minimax estimators.

In the Bayesian framework, we consider the parameter and observation vectors to be
jointly distributed on € x X. We shall suppose that the parameter vector © has the
marginal distribution A and that the conditional distribution of the observation vector

X given © = 0 is Fy. For any particular value 6 of ©, We define the risk of the estimator
T" at 6 as R(0,T") := E[L(©,T")|© = 0] = [, L(0,T'(x))dPy(x) as before.

DEFINITION 4.1.1. For any estimator 7", the integral

Léfuej”dA /:/ L(0, T'(x))dPy(x)dA(0).

is called the Bayes risk of 7" with respect to the prior distribution A. The Bayes
risk of T" is thus

ry = B(R(©,T")) = E(L(©,T")).
76
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An estimator 7' is a Bayes estimator with respect to the distribution A if

/ R(6,T)dA (6) = inf / R(0,T')dA (6).

T/

THEOREM 4.1.2. Suppose © ~ A and X given © = 0 has distribution Py. Then if there
exists T(+) which minimizes

E(L((0,T7(X))|X=x)= /QL (0, T (x))dP (0|X = x)

for each x, where P (-|X = x) is the conditional (or posterior) distribution of © given
X = x, then T (X) is Bayes with respect to A.

PROOF. For any estimator 7",
E(L(©,T(X))|X) =z E(L(6,T (X)) [X)
and so, taking expectations of each side,
EL(0,T'(X)) > EL(0,T(X)).

EXAMPLE 4.1.3.

(1) Let L (0,d) = (d — g (8))*. The Bayes estimator T of g (©) minimizes
E(T(X)-g(©)X=x) Vx.
Hence
T(x)=E(g(©)[X=x),
which is the posterior mean.
(2) Let L(0,d) =|d— g(0)]. The Bayes estimator T of ¢ (©) minimizes
E(IT (X~ g(©)|[X =x) ¥ x.
Hence
T (x) = med (¢ (0) X =x),
which is the posterior median.
(3) Let L(A,d) =w(0) (d— g (). The Bayes estimator T of g (©) minimizes
E(w(©)(T(X)-g(0)*X=x) Vx.
It can therefore be obtained by solving

g J (T (%) =g (0)"w (0) dP (9]X = x)

=  J2(T(x)—g(@)w®)dP(OX=x) =0.
Hence
Ew(©)g(©)[X=x)

T = —Fw@eX=x
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EXAMPLE 4.1.4. Suppose X ~ bin (n,p) and p ~ B (a,b). Thus,

dA (p) = —(5(2‘1);5’2>>p“1 (1—p)dp, 0<p<1 ab>0.
The posterior distribution of p given X = x is B (a + z,b+ n — x) since
Frix (pl2) Ixip (z|p) fp (p)
fx (z)
(Mt =p)" T Kp (1 —p)
a fx (z)
— )t (1 - p) !

which is a beta density. (Without doing any calculations it is clear that ¢ (z) must be
F'la+b+n)/T(a+z)l'(b+n—2)).)

Let L (p,d) = (d — p)*. Then the Bayes estimator of p is

1
a—+x
T(w)—/ pr|X(p|$)dp = m
0
a+b a n T
= atbtn a+b Tatbin n
~—~— ~—~
prior mean the usual etimator

Thus T'(X) — X/n — 0 a.s. as n — oo with a and b fixed and as a + b — 0 with n fixed.

Clearly X/n is not a Bayes estimator for any beta prior (i.e. for any a > 0 and b > 0).
However if A is concentrated on the two-point set {0, 1} then X /n is Bayes as the following
argument shows. If P(P=1) =1—7 and P (P =0) = 7, then X is either 0 or n with
probability 1 and

P(X=n) 1-m

P(P=1|X =n)=202nl=l) _ 1o g
P(P=0[X =n) 0

Hence the Bayes estimator satisfies 7' (n) = 1 and a similar argument shows that 7' (0) =
0. Hence T (z) = x/n, x = 0,n. Notice that this two-point distribution is the limit in
distribution of Beta(a,b) as a +b — 0 with a/(a 4+ b) = 7.

THEOREM 4.1.5. Let L(0,d) = (d — g (#))>. Then no unbiased estimator T of g (0) can
be Bayes unless

E(T(X)~¢(©)*=0
i.e. unless T'(X) = g (©) with probability 1 and the Bayes risk of T is zero.

PROOF. If T is Bayes with respect to some A and unbiased for g (0) then
E(T(X)|®) = g¢(©), and
E(g©O©)X=x) = T(x)
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Hence
E(T(X)g(©)) = E(E(T(X)g(0))[X)
= ET(X)’
= E(E(T(X)g(©))]0)
= Eg(0)*
and so

E(T(X)~¢(©)" = ET(X)"~2E(T(X)g(8))+E(9(0))’
= 0.
O

EXAMPLE 4.1.6. Given © = 0, let X1,--- , X,, beiid N (0, 0?) with 0 known and suppose
that © ~ N (u, 72) with u, 72 known. Then the joint density of © and X is

1 1 n 2 1 1 9
Q,X — —ne_ﬁzl(xi_e) —B_ﬁ(e_ﬂ/)
fox (0,x) Vo) — =
and the posterior density of © is
fox (0,x)
flx) = =227
forx (0]x) )
N 2T 6  ub
= clexp (‘@6 ol oEt e

nzT o 2.2
_ N(?Jrrz o1 )
o n 17 -2 2 /|-
at 2 NTT+o

For squared error loss, the Bayes estimator of © is

no? - T2
E(®X) = no=2+ 72 * no—2+ T T (X)
and
1 2
Var(0]X) = ——— =E(0-Ta(X))’|X)

no—2 + 72
rn = EL(©,T))=FE(©-T\ (X)) = 1

no—24 72

For large n, the Bayes estimator is close to X in the sense that Tx(X) — X — 0 a.s. as
n — oo with 7 and o fixed. Also T(X)— X — 0 as 7 — oo with n and o fixed. However,
X is not Bayes since the prior probability distribution N (1, 72) does not converge to a
probability measure as 7 — oo.
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However one can formally obtain X as a Bayesian estimator with respect to the improper
prior distribution, A (df) = df. Suppose

1 (g
P l0) = e

with o2 known. Setting A (df) = df we find that the joint density of (X, ©) with respect
to Lebesgue measure is

p(x,0) =p(x]0).
The posterior distribution of # is therefore

p(flx) = k(x)exp <—% <n92 — 292:@-))

= k" (x)exp (—%‘2 (0 — E)2> : _

Hence,
0 o
T)=N |7, —
p(0]z) (x n)

and so Xis the generalized Bayes estimator of © with respect to L (,d) = (d — 6)*
and the improper Lebesgue prior A (df) = df for ©. The improper prior densities
I(—so<ocy and Ijg o) are frequently used to account for total ignorance of parameters with
values in R and R* respectively.

(Note: unless otherwise stated, all results from now on apply to Bayes estimators,
not generalized Bayes. )
Conjugate Priors

If there exists a parametric family of prior distributions such that the posterior distribu-
tion also belongs to the same parametric family, then the family is called conjugate.

EXAMPLE 4.1.7. Conditional on ¥? = o2, let Xy, -, X, be iid N (0,0?) and define
==(28)7".
fxz (x[§) = Cfrefgzil 7 where r = g

and let the prior distribution for = be T" (g, i) with density

AE) = 2 gt g0
= — e %, > 0.
I'(g)
We note that
g oy g(g+1)
EF(=E)== FE(=2%) =
®=% B@E)=£L5
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Then, the posterior becomes
fax (%) = cle)¢rtoletzaie)

1
= density at f of T <7” +g, ZT) s
x; Q

so that the gamma distribution family is a conjugate family for the normal distribution.
If the loss is squared error then the Bayes estimator of 02 = (26)7"

a+ >

2(r+g—1)

a+ 3y a}
n+2g—2

T(X) = / e o (€0

As @ — 0 with ¢ = 1, the prior density/a converges pointwise to the improper prior
density Ij ) and the Bayes estimator 7'(X) satisfies

T(X) -, X?/n— 0 as..

s-Parameter Exponential Families

Calculation of Bayes estimators simplifies under an s-parameter exponential family, where
for a random sample & = (z1,...,x,), the density is given by (the canonical form):

(4.1.1) —eXp{Zm i (m)}h(zx).

THEOREM 4.1.8. If X has density (4.1.1) and m has prior density w(n), then for j =

1,...,n:
: oT;(x) 0 0
4.1.2 E , =—1 ——1
(4.1.2) ;77 o }m] o 1o m(x) o o8 h(z),
where

m(x) = /pn(a;)ﬂ(n)dn = marginal of X.

PRrROOF. Letting f(n|x) = py(x)m(n)/m(x), note that for any integrable function
9(n, X),

Elg(n, X)|a] = / o(n, ) f (nlz)dn,
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whence upon substituting g(n, X) = >, n,0T;(x)/0z;, the LHS of (4.1.2) becomes:

Blo(n. Xla] — —— [ > (m

1 0
/ |:833j e } e h(zx)m(n)dn

22) X T=AM () 7(n)dn

— % / {% (e="Tih(z)) —eZ"iTiag—S)} e~ (n)dn,

where the last equality follows by bringing h(x) inside the round brackets and using the
chain rule. Finally, switching integration and differentiation gives,

Blo(n. X)la] = oo [ ()i
_Oh@)[0x; 1 [ swn-amp gy
e | h(a)e(n)d
om(z)/0x;  Oh(x)/0x;
)

m(x) m(x

0 0
= o logm(x) — or, log h(x).

g

COROLLARY 4.1.9. If in Theorem 4.1.8 X = (Xi,...,X,) has the density py(x) with
Ti(x) = z;, then the Bayes estimator of i under the loss L(n,8) = > (n; — 6;)? is given
by:

°L OT(x) 0 0
E(n;|z) = E Z- -9 — P g h(x),
(77]’33) ;77 axj ‘.’13] 8$j Ogm(w) (%z:j 0og (w)
forj=1,...s.

PROOF. Problem 4.3.3 using Theorem 4.1.8 with T; = X. ]
EXAMPLE 4.1.10 (Multiple Normal Model). X;|0; ~ indep. N(6;,0?) and ©; ~ N(u, 72),
where o2, i, 72, are all known, and i = 1,. .., s.

_s x; —0; 2
@) = (o) e {-ZE 200

M

\ -~

0, 0? _
—en{ % % 2 ey o
~- —— h()
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By Corollary 4.1.9 the Bayes estimator of 6; is

dlogm(x) Ologh(x)

-2 52 .
- 72+02xi+72+02u’ (Claim).

To prove the Claim, note that one term is easily handled:
o, 108 ) = 5 (‘Z ﬂ) =S
For the other term, we compute m(x) to within multiplicative constants (free of x):
mi@) = [ pafw)r(6)do
i — 0:)° 0; — )
_ /<27mz)—s/2 exp {_2(232 ) _ > ( _ 1) } (27”2)—5/20[9
T

o2 2

o 2 2 _2\—s/2 —=is S a? _ 1 2 i FYg
= (4m°o°T7) "% e 202 /exp{ 20T 1 77 Z@i + Z <02 + = 0; o do.
Completing the square on the exp term in the integrand:

exp = 26— ¢i)’ (- 1)? . 225 + po? \2
2(0212/\?) 2)\2 ’ i \2 ;

= 02+7'2.

Thus,

@) ocexp {53z Yo =2} [ow{ -5 Y0 - 0

~
constant (free of x)

from which we conclude that, marginally, X; ~ iid N(u, \?), whence
dlogm(zx) 5, (z; — p)? )
~om _8_%27 = —(z; — p) /N,
and therefore

o’ lalogm(m) _ 8logh(a:)} — 52 [_xi — K %} T o2

— | = i+ .
ox; ox; A2 02 T2+ O'Qx T2 + O'QM

Having obtained the Bayes estimator by simply differentiating apropriate functions, the
next obvious question concerns the computation of its risk.

THEOREM 4.1.11. The risk of the Bayes estimator in Corollory 4.1.9 is:

R e ZE 32105;(’%(%%—;;)‘))1
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PROOF. Stein’s Identity is applicable to an exponential family in canonical form (as
in Theorem 4.1.8), and states that for any differentiable real-valued function g with
E|lg'(X)| < oo, we have

Ologh(X) <~ 0T,
E{[ §X§ )+Zm a)(()

=1

8X’

g(X)}: 8g( ) forj=1,...,n

provided the support of each X; is all of R. (If the support is a bounded interval, then
the above holds if exp{>_ n;T;(x)}h(x) — 0, as x approaches the boundaries.) Applying
the Identity with g(x) = 1, and noting that in our case T; = X;, we get:

Oh(X)/0X; > 0Xi| B
Er WJFZ:?% ox; | = E(0) =0,
= ~——
67;3'
which leads to
dlogh(X)] , dlogh(X)]

Thus —0log h(X)/0X is an unbiased estimate of n with risk:

Ologh(X)\ . <[ | dlogh(X)]*

i=1

Now, the risk of the Bayes estimator is given by:

R(n, E(n|X)) EZ E(n,| X)]*

_ Ei{ﬁj_(@lo%;‘()()_alog;( ))r

- B [+ 2R ] 23 g1+ X o)) +ZE(along))2

-~

-

R(T'v*%) —E(%), Stein’s Id. with g(x)=0logm/Ox;
8logh 8210gm (X) dlogm(X)\”
= R (T w 3om R ¢ (PR .

OJ

EXAMPLE 4.1.12 (Multiple Normal Model (continued)). From before, —0log h(x)/0x; =
r;/0?, which as we saw in the above proof, is unbiased for n; = 6;/0%. Thus, and since
X = (Xy,...,X,)is CSS, we have that —0log h(x)/0X = (X;/0?,...,X,/c?)is UMVU
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for p = (01/0?,...,0,/0?). Now, and from the above proof, the risk of the UMV UE is:

R ) - e 25 - (55

=1

since X;|0; ~ N(6;,0?) implies Ey, (X; — 6;)? = o2, Thus, the risk of the Bayes estimator
is given by:

R, E(n] X)) :=.R<n, ooe (X ) §jE

8210,5.>;m(X)+ dlogm(X)\”
0X? 0X;

Summary:

e UMVUE of i is (X1 /0?,..., Xs/0?), with risk R (n, —0log h(X)/0X) = s/c?.
e Bayes estimator of n is

2/o 2/a
/ Xl—f—Lw"a# s+ lu )
02 + 72 02 + 712 02 + 72 02 + 72
with risk

sT4 o> a?
R (n,E(n|X)) = NP

o2(02+712)2 (024 12)¥’

which is smaller than the risk of the UMVUE if, e.g., n; = u/c?, Vi.

Empirical Bayes

General Bayes setup thus far has been:

{Xiyewf(x\e), i=1,...,n

Oly ~ w(0]y), 7y is known.

The Empirical Bayes idea is to treat + as unknown, and use frequentist methods to
estimate it based on the marginal distribution of X:

mialy) = [ T staloyn(ol)ao
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For example, one can use m(x|y) to produce the MLE 4(x). Then, the empirical Bayes
estimator, 7'(x), minimizes the (empirical) posterior risk:

/ L(0, 7)) (6], 5 ())do.

The empirical Bayes estimator is best suited to situations in which there are many prob-
lems that can be modeled simultaneously in a common way.

EXAMPLE 4.1.13 (Multiple Binomial Model). For the k-th treatment group, k = 1,..., K,
we measure X, the number of successes out of n trials, and model it as

Xy ~ Bin(n, p).

We attach the same prior to each py (this is appropriate since the treatments all corre-
spond to the same disease):
pr ~ Beta(a, b).

Now, from Example 4.1.4, the Bayes estimator of py is:
a—+ xy

T(x) = ——7.

(@) a+b+n

These were easy calculations for fixed (a,b) and conjugacy. To compute the empirical
Bayes estimator, we first need the marginal of X = (X3,..., Xg):

mielat) ~ | . / ﬁ (fk)p;zk(l - e 4= )

B n\I'(a+0)'(a+ zx)l'(n — x4+ b)
= 11 (x,) ['(a)T(b)L(a+b+n) '

k=1
There is no closed-form solution to this, but one can compute the MLEs (a, 1;) numerically,
leading to the empirical Bayes estimator:

a+ xy,
a+b+n
It turns out that the Bayes risk of the empirical Bayes estimator is often just slightly

higher than that of the Bayes estimator (which therefore enjoys a certain degree of
robustness).

T(w):

For estimation of the canonical parameter in exponential families, the empirical Bayes
estimator can be expressed in the same form as the Bayes estimator.

THEOREM 4.1.14. , For the situation of Corollary 4.1.9 with prior m(n|\) where X is a
hyperparameter, the empirical Bayes estimator of n; is:

. Blogmiz|A) — Ologhiz) using the MLE ()
E(nple, ) =4 % Ded@  om ’
’ dlogm(x|A(x))  Jlogh(x)

o T using general estimate A(x).
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PROOF. Straightforward from Corollary 4.1.9 with with m(a) — m(z|\). For the
MLE-based simplification, apply the chain-rule to the general estimate:

dlogm(z|\(x))  dlogm(z|\) .65\(m)+8logm(w|)\)

0x; oA A=A (@) O; I A=A(z) '

(. /
~\~

=0 since A(z) is the MLE

EXAMPLE 4.1.15 (Multiple Normal Model (continued)).
X;|0; ~ indep. N(0;,0%), ©; ~ indep. N(u,7%), i=1,...,s,
with g unknown, {02, 72} known. Note the marginal of X from before:
_ 2 2\1—5/2 > (xi — p)?
malp) = [2n(o* + 7] e { - S0

which implies i = X is the MLE of u. By Problem 4.6.10(a) and Example 4.1.10, we
thus obtain:

7_2 0.2

02 + 72 02 + 712

= Bayes estimator of §; under a N(j, c?) prior.

empirical Bayes estimator of §; =

NoOTE 4.1.16. Using Theorem 4.1.11, we can express risk of Bayes estimator in Theo-
rem 4.1.14 as:

. N2
. dlog h(X 8210 m(X |\ dlog m(X |\
R('I?JE(an,A)> zR(n, g ) ZE gan | )+< ga)é | )>

For the Multiple Normal Model we get the result in Problem 4.6.10(b).

4.2. Minimax Estimation

DEFINITION 4.2.1. A statistic 7T is said to be minimax if 7" satisfies
minsup R(0,7") =sup R(0,T) .
T geq 0

We have seen that many estimation problems allow the determination of UMVU, MRE
or Bayes estimators. Minimax estimators however are usually much harder to find.

A minimax estimator minimizes the maximum risk. i.e., a minimax estimator minimizes
the risk in the worst case. This suggests a possible connection with Bayes estimation
under the worst possible prior.

Given A on (), let r, denote the Bayes risk of the Bayes estimator T}, i.e.

TA Z/R(H,TA)dA(Q)
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DEFINITION 4.2.2. A prior distribution A is least favorable if
ra > ra for all other priors A’
THEOREM 4.2.3. Suppose a prior A satisfies

ra =sup R (0,T)).
0
Then

(1) Ta is minimaz.

(2) If Ty is the unique Bayes estimator under A, then it is the unique minimaz
estimator.

(3) A is least favorable.

PROOF. (1) For any estimator T,

supR(0,T) > /R(G,T)dA(@)

0eQ)
> /R (0,Ty) dA (0) (since T, is Bayes for A.)

= sup R (0,T,) by hypothesis.
00

(2) If Ty is the unique Bayes solution then the second inequality in (1) becomes
strict. (i.e., >—>.)
(3) If A’ is another prior distribution then

/ R(0,Ty) N (d6)

/R (0,Tx)dA (0) since Ty is Bayes for A’

TA

IN

< sup R (0,Th)
0

ra by hypothesis.

COROLLARY 4.2.4. If Ty has constant risk then it is minimaxz.

Proor. If R(6,T)) is independent of 6 then

/R(@,TA) dA (0) =sup R (6,Th) .
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EXAMPLE 4.2.5. Let X ~ bin (n,p), L (#,d) = (d — #)*, and § = p. We shall show below
that X/n is not minimax. Let us use Corollary 4.2.4 to derive a minimax estimator.
Suppose P ~ B (a,b). Then we have from example (4.1.4) that

atx—1 (1 )b+n*3€*1 and

fP|X (plr) = c(x)p -p
a+x

Ty = ——.

A a+b+n

Thus we obtain

1 2
R(p,Tn) = ——FE,(a+X —pla+b+n
(P, Th) @rbin?  ( p( )
npq + (qa — pb)”
(a+b+n)
Now, choose a and b to make the risk independent of p. Since the coefficient of p? is
—n + (a+b)* and the coefficient of p is n — 2a (a + b), setting these equal to zero gives

Hence
x + \/TE

Ty =
b Vn

is Bayes with constant risk and is therefore minimax.

Since T}, is the unique Bayes solution with respect to Ag ~ B (‘/75, ‘%ﬁ), it follows from

theorem 4.2.3 part (2) that T, is the unique minimax estimator of p with respect to
squared error loss and the risk is

rne = E(Thy—p) = /R(p, T'xy) Ao (dp)

1 n
- v i
_ Bi:R(p,TAO), where 8, = 4 (1+ vn)®.

The risk of the usual estimator with squared error loss, T'(X) = X/n, is

R(p,T)=E, <i—(_p>2:w.

n

Thus, since the risks of 7" and T}, coincide at % + ¢, where ¢, = /2 — 4np,/(25,), we
have:

R(p7TAO) < R(paT)a for

1 <
- 5 Cn,
P35

R(p,Tx,) > R(p,T),  for

1 >
— = > c,.
P—3
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Now, ¢, — 0 as n — oo, but ¢, is larger for small n. For n =1,

TAo(x):{ if 2 =0

if x =1.
REMARK 4.2.6. Squared error loss might not be best for estimating p. The penalty
should perhaps be larger at the endpoints p = 0 and p = 1. If we use
d—p2 d—p2
L(p.d)— (d—p)” _ (d—p) ,
pq p(1—p)
then X /n has constant risk and is Bayes with respect to U (0, 1) prior (check!).

N [JURTSNS oy

DEFINITION 4.2.7. Let A be a sequence of priors, and suppose
A, = /R(G,Tk)d/\k(ﬁ) —ras k — oo,

where T} is Bayes with respect to Ay for each k. We say that the sequence {A;} is least
favorable if
ra < rforall A,

i.e. if the limit of the minimum Bayes risk is at least as bad as the minimum Bayes risk
for any prior. (Compare Definition 4.2.2.)

THEOREM 4.2.8. If there exists an estimator T and a sequence of prior distributions { Ay}
such that
supR(0,T) = lim 7y,
0

k—o0

then

(1) T is minimaz (but not necessarily unique.)
(2) {Ax} is least favorable.

PROOF. (1) If 7" is any estimator, then
Sup R(0,T) > / R(0,T') dA
0

> Ta,, Vk

and hence
sup R (0,T") > limry, =supR(6,T).
0 0

(2) If A is any prior, then

TA

/R(G,TA) dA (6)
< /R(@,T) dA (9)
< supR(0,T)

= lim 7y,.
k—o0
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EXAMPLE 4.2.9. Suppose that X;,---, X, ~ iid N (6, 0?).

(1) 0 known:
© ~ N (u,k*) = Aj. In example (4.1.6), we saw that the Bayes estimator for
squared error loss is
no=? k2

X =T

no—2+ k=2 + no—2+ 2t A

E(0]X) = (X)

with
= E<TAk - 6)2
- E(E(©-E(OX)X)
= FEVar (0|X)
1
nfo?+1/k*

T’Ak

As k — oo,
2

o —
TA%EZR(G,X)

Hence, X is minimax (for squared error loss) by theorem (4.2.8).

(2) 0% unknown:
Since supg 2 R ((6,0%),T) = oo for T'(X) = X and X is minimax for each fixed
o, we restrict o2 to satisfy 02 < m < oo. If T is minimax on # € R, 0> < m

then
sup R ((0,02) ,T) < sup R ((0,02) ,7) = sup R ((0,02) ,7) .
0,02=m 0,02<m 0,02=m

But X is minimax on o2 = m, hence this is an equality. Hence X is minimax

on § € R, 02 < m. Although the restriction o2 < m was necessary to make the
minimax problem meaningful, the minimax estimator X does not depend on m.

4.3. Minimaxity and Admissibility in Exponential families

Given two estimators T, T”, such that
R(0,T) < R(,T') for all 6
then T is preferable to 7’ on the basis of risk.

DEFINITION 4.3.1. 7" is inadmissible (with respect to the loss function L) if there exists
T such that
R(6,T) < R(6,T") for all 6

with strict inequality for some 6. (In this case, we also say that 7" dominates 7".)

An estimator is admissible if it is not inadmissible.
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In general, it is difficult to determine whether or not an estimator is admissible. . .

(Note: We will naturally restrict our attention to non-constant estimators, since any
T = 6y, where 6, € €, is trivially admissible.)

THEOREM 4.3.2. If T is a unique Bayes estimator with respect to some A, then T is

admissible. (Uniqueness means that any two Bayes estimators T and T' differ only a set
D where Py(D) =0, V0.)

PROOF. If T is not admissible then there exists 7" such that
R(0,T) > R(0,T') for all 6
and
R(6,T) > R(0,T") for some 6.

Now [R(0,T)dA > [ R(6,T")dA implies that 7" is Bayes with respect to A. Hence by
uniqueness R (0,7") = R(0,T) for all § and we obtain the contradiction. O
EXAMPLE 4.3.3. Suppose that Xi,---,X, ~ iid N (0,0?) with 0 known. Let © ~
N (p,7%) and L (6, d)=(d — §)*. Then

L — 2

g
T = X *
02 4+ nr? + o2 —|—n7'2u (+)

is the unique Bayes estimator of © and is therefore admissible.

This example shows that aX + b is admissible for all @ € (0,1) and b € R since any
a € (0,1) and b € R can be obtained in (*) by suitable choice of y and 7% and hence
aX + b is unique Bayes for some A.

THEOREM 4.3.4. If X ~ N (0,02), 02 is known and L(0,d) = (d — 6)* then aX + b is
inadmissible for 6 if

(1) a>1,
(2) a <0, or
(3) a=1andb#0.

PROOF. We first calculate
R(0,aX +b) = Ep(aX+b—0)
= Ep(a(X —60)+60(a—1)+0)?
= d®c?+ ((a—1)0+b)>.

(1) Iifa > 1,
R(0,aX +b) > R (0, X) = o for all 0.
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(2) If @ < 0, then (a —1)*> > 1 and
R(0,aX +b) > ((a—1)0+0b)

2 b\
= -1 0
@12 (04 -2)
b
> R(Q,O-X— )
a—1
(3) If a=1 and b # 0, then

ROX+b)=0"+b*">0"=R(0,X).

O

COROLLARY 4.3.5. Suppose that X1,---, X, ~ N (0,0%) with 0> known. Then aX +b
s inadmissible if

(1) a>1,
(2) a <0, or
(3) a=1andb#0,

and admissible if 0 < a < 1.

PRrROOF. It remains only to establish admissibility when a = 0. This is trivial since
for the estimator T'(X) = b corresponding to a = 0, the risk at 6 = b is R (b,b) = 0 and
every other estimator has positive risk at b since if Pp(7"(X) # b) > 0 for some 6 then
T'1({b}¢) has positive Lebesque measure and this implies that Py(T"(X) # b) > 0 and
hence that E,(T" — b)? > 0. O

PROPOSITION 4.3.6. Suppose that X1,--- , X, ~ iid N (0,02) with 0 known. Then, X
15 admissible.

PrOOF. We give two proofs.

(1) (Limiting Bayes method) Assume without loss of generality that o* = 1. If

X is inadmissible then there exists 7% such that R (#,7%) < I for all § and
R (0, T*) < + for some 6.

n 2

e—%(ﬂci—Q)
R(0,T*) = Ey (T* — 6)* = / (T (x) - 0)* ]| de

i=1

is continuous in a neighborhood of 6. Hence there exist a and b such that
a < 6y < band ¢ > 0 such that

R(6,T") < l—cfor all 0 € (a,b).

n
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Suppose that © ~ N (0,72) =: A. Then we shall obtain a contradiction by
showing that

1
ry = FER(O,T") =
A .17 = 7%=

is smaller than the minimum Bayes risk for A, i.e.

ER(O,T)) ! r
T g g g .
A A no 24772 nr241

/R(&,T*) e 32 df

(As in example (4.1.6) ,
2

2 _ T —
E(©-Ty(X) X) = n2+1 Var (9[X)
so that
2
-
ra=E(© Ty (X))2 =FE (E ((@ — T (X))2 |X)) Tty 1')
Now
—02
R T
: _ : ~ do
L = — =
n n nrt=+1
2 b 2
. M/ (l_R(e,T*)) ¢ 37 df
TV 21 a \N
2 b e
Cw/ 57 dg
T 27 a

where ¢ > 0 is independent of 7. Since the integral in the last line converges to
b—a as 7 — oo by DCT, the ratio goes to infinity as 7 — co. Thus, for all
sufficiently large 79,
r/*\(u,m) < TA(um0) >
which contradicts the fact that r,(, -, is minimum Bayes risk.
(2) (Via the information inequality) If T is any estimator of 6 with finite second
moment under each Py, then EyT = b () + 6 and

R(0,T) = VargT +b*(0)
(1+0(6)
= 1(0)

— (1 + b/ (0))2 4 b2 (Q)

+ b%(0)

(0" (0) exists by theorem (1.3.13) and we assume without loss of generality o = 1.)
Hence if T is risk-preferable to X,

R(6,T) < 1 for all 6, (%)
n
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l.e.

/ 2
b? (0) + ISRl A ) < foran 6 (%)
n n
and so .
b(0)| < NG for all 6 (% % %)
and

(1+0'(9)° <1
= —2<V(0)<0
= b is non-increasing.

Now, we claim ' (fx) — 0 for some sequence 65 — oo. If this is not the case,
then limy_,.,b'(f) < 0 and there exists 6 and € > 0 such that b’ (§) < —¢ for all

6 > 6y. Then,
0
b(6) = [ ¥ wdy+b(6)
0o
< (=6 (—e)+b(0y) — —o0 as 6 — oo,
contradicting (***) and thus proving the claim. Similarly, there exists ¢ — —oo

such that v/ (9;‘) — 0.

Now, (**) implies that b (65) — 0 and b (6;) — 0. But since b is non-increasing,
this implies that b () = 0 for all § and hence that ¢/'(9) = 0 for all §. Hence, by
the information inequality, R (0,T) > %, and so by (*),

1 __
ROT)=—=R(0,X
0.1)= 2= R(.X)
so that X is admissible.

OJ

The above argument also shows that X is _minimax since there is no estimator whose
maximum risk is less than 1/n. In fact, X is the unique minimax estimator by the
following theorem.

PROPOSITION 4.3.7. Suppose that T' has constant risk and is admissible. Then T is
minimaz. If in addition L(0,-) is strictly convez, then T is the unique minimaz estimator.

PROOF. By the admissibility of 7', if there is another estimator 7" with sup, R(0,7") <
R(0,T) then R(0,T") = R(0,T) for all 0, since the risk of 7" can’t go strictly below that
of T' for any . This proves that T is minimax. If the loss function is strictly convex and
T' is a minimax estimator such that Py(7" # T) > 0, then if T* = 2 (T +T"),

1

which contradicts the admissibility of T'. O
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Exponential Families (with s = 1). Suppose that the probability density of X
with respect to the o-finite measure p is

T (@) =¢(0) p, (z)

where

/eeT(m)h (z) dp (z) = e?®
Then

ET (X) =¢'(0) =9 ().
Suppose the natural parameter space €2 is an interval with end-points 0, 0y, —oo <
0;, <0y < oo and

L(0,d) = (d—g(9))".

The same argument used in the proof of theorem (4.3.4) shows that a7+ is inadmissible
for (1) a <0, (2) a>1,0r (3) a=1and b # 0.

If a =0, then aT + b is admissible since g (é) = b is the only estimator with zero risk at
b. To deal with the remaining cases consider

1 A
—T+——, 0<)A< R (ie. 0<a<1l).
T\ +1+)\, < 00, I € (i.e a<1l)
THEOREM 4.3.8 (Karlin’s Theorem). The estimator
1 rA
T <A R
T X +1—|—/\’ 0<A<oo, reR,

is admissible for g (0) = @' (0) = EoT if for some (and hence for all) 0y € (0r,0y)
0
/ ’ efr)\GJr)\go(Q)de - 00

0r,
and

(45
/ 6—7’)\9+)\<p(9)d9 = oo,

0o
ProOOF. Recall that

¢ (0) = ET
@' (0) = Vary(T)

1(6) = E (—mogg;x’e)f

= Ep(T—¢'(0)) =" (0).
Suppose there exists § (X) such that

T+rA
14+ A

By (6(X) — ¢ () < Ey ( — (9)) for all 6. (%)
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We have that
Ey(6(X)— ¢ () = Vargd (X)+ b (6)

(5 (0(0)+¢(9))
= 1(0)

2

= v (0)+

(b' () exists since Fy|d (X)| < 00.) So by (%),
10 g )
(14 1) 1+A>

Letting

A
1+A

4 (9) =V (9) + 1—0——)\%0// ((9) .

h(0) =b(0)

(= 0) =b16) = bias (5 + 1oy )

(**) is exactly equivalent to

h (0 1 [ 2 "
0 2 1020 2y - )¢ OO e R
: L 21 0) (1 (0)

Letting & (6) = h (0) erA0=2¢(0) (%) becomes
k2 () e 4 H—)\k' ) < 0 (% % %)
= k' () <0 for all 6.
Hence, k() is decreasing. To prove

k(6) > 0 for all 6,
suppose k (0y) < 0.Then k (6) < 0 for all 6 > 6. From (****)  we also have

i/ 1 K0 14X .,
@(W):_mefz g ¢ forall 6> 8y (xxxn),

Integrating both sides of (*****) from 6, to 6; > 0y,
1 1 1+ A /91 NI
— > erA0=A0) g,
k(01)  k(0o) = 2 Jy

As 0, — 0y, this integral converges to oo by assumption. But the left hand side is less
than ——+—~ so that we obtain the contradiction. Hence

k(6o)
k(6) > 0 for all 0.
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Similarly,
0o
/ eA0=2O0) 49 — 00 = k (6) <0 for all 6.
0L
Hence,
k(@) =0= h(0) =0 forall @ = h'(0) =0 for all 6.

Thus, ' (#) = 0 and h(#) = 0 implies equality in (***), equality in (**), and finally
equality in (*). (RS of (*)=LS of (**) > LS of (*) >RS of (**)). Since L2 has the

T+A
T4r) o
, oy is admissible. O

same risk as 6

NOTE 4.3.9. The case A\ = 0 is of particular interest, i.e. 7" is admissible for FyT
provided 6, = —oo and 0y = .

EXAMPLE 4.3.10. Suppose X ~ b(n,p) and 0 := log %, —00 < # < 0o. Then

(o) = (1o =gy = () et

X

and T (X) = X is admissible for

7’L€9

¢ (0) = T et =P

since 0;, = —oo and 0y = oo.

EXAMPLE 4.3.11. Suppose X, -+, X, ~iid N (6, 0?) with o2 known.

1 S a? Sxi nb?
p(x,0) = o exp (— 552 ) exp (0 — —)

o2 202

T (X) X

o2
nf
¢'(0) = gy
T (X) is admissible for nf/o? since 6, = —oo and 0y = oco.

4.4. Shrinkage Estimators and Bigdata

The idea behind “shrinkage” is to deliberately introduce bias in unbiased (or nearly un-
biased) estimators (UMVUE, MLE) in order to reduce their risk. James & Stein (1961)
were the first to do this. While this was seen as unusual and irrelevant to the applications
of the time, it has become crucially important in the bigdata era. Before telling this story
we discuss extensions to our earlier esults.
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Simultaneous estimation and extensions of earlier results. So far our esti-
mand, g(0), has been scalar. In general we want to estimate an r-dimensional function
g(0) = (g1(0),...,9.(0))T, based on an r-dimensional estimator T' = (Ty,...,T;)T. The
first issue is how to define risk with multivariate arguments. The two most common
definitions under squared error loss are as follows.

(a) Risk under sum of squared errors loss:
R(6.T) = Eo[T — g(0)]"[T — g(0)] = ) _[Ti — ¢:(6)]* = scalar.
i=1
This gives a complete ordering of estimators, i.e., for T' and T”, exactly one of
R(6.T) < R(6,T"), R(0,T) = R(6,T'), or R(6,T) > R(0,T"), holds. (It will
be our default risk function.)
(b) Risk under concentration matrix loss:

R(O,T) = Eo[T —g(0)|[T —g(0)]" = matrix (r x r)

= VaryT, if T is unbiased.
We say that T' is more concentrated about g(@) than T” if
(4.4.1) R(O,T)—R(O,T)>0, (ps.d)

This gives only a partial ordering of estimators, because the matrix in (4.4.1)
may be neither psd nor nsd (e.g., when it has both negative and positve eigen-
values).

NOTE 4.4.1. It can be shown that if R(0,T) < R(6,T") for every convex loss function
L(6,d), then (4.4.1) holds (TPE Lemma 5.4.1).

With the (obvious) definition that T is unbiased for g(8) if and only if EgT = g(0), we
have the following extensions of earlier results.

(1) Rao-Blackwell Theorem (Ch. 2). The multivariate version is essentially the same;
if Ty is unbiased for g(@) and S is complete & sufficient, then E(Tp|S), has uni-
formly minimum risk among all unbiased estimators (is UMVU), and is thus
more concentrated about g(@) than any other unbiased estimator.

(2) Equivariant Estimation (Ch. 3). All definitions and results apply without change.

(3) Bayes, Minimaxity, Admissibility (Ch. 4).

— The definition of Bayes estimator remains unchanged, but one can often
compute these componentwise by marginalizing both the likelihood and the
prior (e.g., TPE Problem 5.4.3). This marginalization trick always holds
true under sq. error loss (TPE Lemma 5.4.3).

— The definition of minimaxity remains unchanged, but results have to be
derived individually for each situation.

— For admissibility the story is quite different, as we will see in the remainder
of this section.
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James-Stein Estimator. Let X; ~ N (0;,1) i = 1,--- ,s be independent random

variables and let
2 2
L(6,d)=d—0[*=>(di—6).
The usual (MLE) estimator of 0
T(X> = <X17 e 7Xs>
will be shown to be inadmissible if s > 2.

Let

where S? =37 | X?2. Here

5s,c

THEOREM 4.4.2.

R(6.5.) = s — (s — 2 Ey (2(;5_202) |

To prove the theorem, we need the following two lemmas.
LEMMA 4.4.3. If X ~ N (0,1) and g : R — R is absolutely continuous with derivative g’
then
Elg (X)| <oo= Eg' (X) = E(Xg(X)).
PROOF. Let ¢ (x) = (27‘(‘)7% exp (—2?/2). Then

¢ (z) = =¢' () (%)
Then

Eg (X) =

- [T ([ o) i [ g ([ o) e
_ /Om</()zg()dx) dz—/io /Og )gb()dzbyFubini
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LEMMA 4.4.4. Suppose X = (X1, -+, Xy) where Xy, -+, X are independent and
Xi ~ N (,uiyvi) .

Suppose f: R® — R is absolutely continuous in x; for almost all (x1,- -+ X1, Tip1, -
Then if
0
X)| <
T (X)) <o
0
UiE%f (X)=E(X; — ) f(X).
PROOF. Let x
A /lz‘.
N

then from lemma (4.4.3),

E(LZf (w1, Bicas i + UG Tt @) e=z)
= E(Zf (1‘17"' s Ti1s i+ /Ui, Tigr, ,xs))-
Thus,

\/EE (g_zfl (X) ‘Xh T 7Xi717Xi+17 e 7Xs)
E (X%f(x) [ X, Xia, Xiga, oo >Xs> :
Taking expectation of each side, we obtain the desired result.

Now, we are ready to prove the theorem.

PROOF. (of theorem) Let

fi
fﬂX)z%Xi and f = :
s
Then
b.=X—f
and
R(0.5) = B (X~ fi-6))
= E(Z(Xi—ez')z—QZ(Xi—Qi)fiJerf)
.0 X?
= 5—2Y) E—fi(X)+ E( > 2 (s —2)%.
s ; oz, Z i )¢
Since

0 S2 - X; - 2X; 1 2X?
) = el -9 T R o0 (- )

101
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s—2
g2

P (205;02) |

)+c2(s—2)2Ei

R(6,08.) = 5—20(3—2)]3( o

[
COROLLARY 4.4.5. For0 <c <2 and s > 2,
R(0,6.) < s for all 6
and &, dominates all the other 8.s.
PROOF. 2¢ — ¢? > 0 for all ¢ € (0,2) and has a maximum value at ¢ = 1. O

REMARK 4.4.6. The James-Stein estimator (1 — 25) X hasrisk R (0,8;) = s—(s — 2’ FE (g2)-
The risk of X is
R(0,X)=E> (X;—0)" =s.

Therefore, X is not admissible for 8. In fact, the James-Stein estimator is not admissible
either. A strictly risk-preferable estimator can be arrived at as follows.

Empirical Bayes Interpretation of the James-Stein Estimator. Suppose O, --- , 0,
are iid N (0,72%), i.e. this is the prior on each ©;. If 72 were known, the Bayes estimator
with respect to squared error loss would be

. X; 1
0, = Lo =(1- X, =1,---,s.
1+772 ( 1—1—7‘2) ! °

However, if 72 is unknown it must be replaced by some estimate. Write
X, =0;+ 27, {Z;} ~iid N (0,1) with {Z;} independent of {O;},
so that X;|©; = 6; ~ N (6;,1). Then,
{Xi} ~iid N (0,72 +1).

Since S? = 7. X2 is complete and sufficient for 72, $=2 is UMVU for —=. So a natural
i=1""1 S 1+7
(empirical Bayes) estimator of 6; is

s—2
61_(1— S2)X
1

1472
a better estimate of ﬁ is min (55_—22, 1) which suggests using

8 = <1—min (#,1))X—max <1—SS%2,1) X.

Moreover since

<1,
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87 is strictly risk-preferable to 8, (so &; is inadmissible). But &, is also inadmissible. It
was a difficult problem to find an estimator which is strictly risk-preferable to 7, in fact
it took twenty years. It is now known that there are many admissible minimax estimators

(TPE p. 357).

4.5. Discussion (Efron & Hastie, 2016)

e Although we gave a Bayesian interpretation of the JSE (James-Stein Estimator),
it does not rely on any Bayesian assumptions!

e It’s hard to construct JSE-like estimators; have to be done case-by-case (like
UMVUEs). MLE on the other hand provides automatically asymptotically
UMVU estimates (Ch. 6).

e The “shrinkage” in the above examples was toward zero, but in general it is
toward a common central value like a mean (usually representing a null of no
difference).

e Classical vs. Bigdata (to shrink or not to shrink): let n denote the sample size
and p the number of parameters to estimate.

Classical Data (n > p) Big Data (n~ p or n < p)

Shrink? | no (generally) yes (generally)
MLE penalized /regularized likelihood
Methods | least-squares penalized /regularized least-squares

max. posterior probability (MAP)

e Shrinkage tends to produce better results in general (on average), but this comes
at the expense of extreme cases (outliers). E.g., if most of the 6; ~ 0 in JSE, but
there are a very few large |0;], the result will be heavy shrinkage of the latter
(toward overall mean = 0). This situation is not uncommon in contemporary
bigdata where the outliers are precisely the “interesting” cases swimming in a
sea of uninterestingness. .. (see TPE p. 364-365).



CHAPTER 5

Large Sample Theory

This chapter introduces definitions, tools, and techniques for establishing asymptotic
results. Before detailing the different modes of convergence, we recall the following basic
result which is often used in proofs (along with the Triangle Inequality).

PROPOSITION 5.0.1 (Chebychev’s Inequality). If Eg(X) < oo, where g(-) is a nonnega-
tive function and € > 0, then

P(g(X) =) < Eg(X)/e.

Proor. TPE Problem 1.8.1. O

5.1. Convergence in Probability and Order in Probability

DEFINITION 5.1.1. A sequence of random variables X, is said to converge to 0 in prob-
ability if for any € > 0,
P(|X,]>¢)—0 asn— oo,
in which case we write
X, 50
or equivalently
X, =o0,(1).
DEFINITION 5.1.2. {X,,} is bounded in probability (or tight) if for any € > 0, there exists
M (e) < oo such that
P(|X,| > M) < ¢ for all n, (or equivalently for all n sufficiently large),

in which case we write

DEFINITION 5.1.3.
X, 52X = X, - X50=X,-X=0,(1)
Xn

Xn=0,(a,) = =0 (1)
X
X =0,(a,) = a—":Op(l).

PROPOSITION 5.1.4. Let {X,,} and {Y,} be sequences of r.v’s and suppose a,, > 0 and
b, > 0. Then the following results hold:

104
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(1) If X,, = o, (a,) and Y, = o, (b,) , then
XY, = o,(anby)
X, +Y, = o,(max(a,,b,))
X" = o,(ap), r>0.
(2) If X,, = 0, (a,) and Y, = O, (b,) , then
XY = oy (ayby,) .
(3) If X, = O, (ay,) and Y,, = O, (b,) , then
XY, = Op(ayb,)
X, +Y, = O,(max(an,b,))
| X" = O,(a)), r>0.

PrOOF. We only prove the first part and leave the remaining parts as exercises.

If [ZoXul > ¢ then
either |—| <1 and |[—| > ¢
b, an,
Y, Y,
or |—|>1and |—/== €.
b’ﬂ an n

Thus, if X,, = o0, (a,) and Y,, = o, (b,), then

XnYo Xn &
P | | >e| <Pl|—|>e|+P||—

anby, an bn
If % > ¢, then since | X, + Y, | < |X,| + |[Yal,

| Xs] > Z or Yy
an 2 b,

>5) — 0
T 1
If pi—"l > g, then ‘)a(—”‘ > e¢r. Thus,

X,|"
P(—| | >€)—>O.

T
a’I’L

>1)—>0asn—>oo.

>

DN ™

Thus, as in the previous part,

X, +Y,
pl|l-2r""n
(‘ max (ay, by,)

g

DEFINITION 5.1.5. For a sequence of random vectors X,, = (X1, , Xum), we define
O, and o, as follows:
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( ) <:> an:Op(a,n)’jzl’...’m.
X,=0,(a,) <= X,;=0,(a,),j=1,---m.
—= X, X=0,(1)=X,; B X;,j=1,--- ,m.

—

DEFINITION 5.1.6.

X = X[7 = Xy — X[
j=1

PROPOSITION 5.1.7.
X, —X=0,(1) <= IIX,, — X|| :op(l).

PROOF. =)

P(IX,=X|P>¢) = P

IN
v

IN
[
s
—
s
=
v
L
d
(e

| X i — Xi? < X = X|? = X — Xi =0, (1)

O
PROPOSITION 5.1.8. If X, = Y, 2 0 and Y, — Y 5 0, then
X,-Y % o.
PROOF. By the triangle inequality:
[Xn = Y| < IX = Yol [+ [[Yn = Y[ =0, (1).
O

PROPOSITION 5.1.9 (Continuous Mapping). If X,, 2 X and g : R™ — R® is continuous,
then
g(Xa) = g(X).

PROOF. We note that X,, 2 X if and only if every subsequence {an} has a subse-
quence {an } such that X,,., — X a.s. as k — oo. Hence if {Xn} is any subsequence
k Ik J
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of {X,}, then there exists a subsequence X, 2% X whence g (ank) 2% ¢(X). But
this implies that ¢ (X,) & ¢ (X). O
EXAMPLE 5.1.10. If X,, £ X, then X, = O, (1) and X,, = o, (a,) for any sequence {a,}
such that a,, — oc.

EXAMPLE 5.1.11. Suppose Xi, Xs,--- iid. Then X,, = O, (1) and X,, = o, (a,,) if a, —
oo. Also, by WLLN and CLT,

n op (n) if EX,=0
Y Xi=8,=400,(n) if EX;#0
1 O, (v/n) if EX; =0 and Var (X;) < o0.

Taylor Expansions in Probability

PROPOSITION 5.1.12. Suppose X,, = a + O, (r,) with r, = 0 and r,, > 0. If g has s
derivatives at a then

gl .
9" (a) .
g% = S (x, a0, ().
=0 J:
J
PROOF. Let o
(@) =S5y “o D w—a)]
h(z) = =0 ifxr#a
0 if v =a.
Then h is continuous since g has s derivatives at a. Since X’;—n_“ =0, (1),
X,—a=o0,(1).
Thus,
h(X,) % h(a)=0
, L.e.
h(Xn) = 0p (1)
Thus,
(Xn B a)s s
h(Xn) Sl =0y ()

Thus,
— 1 — 1
log X,, = log i + ; (X—,u) +op (n 2)
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and

— Vo —
vn (log X, — log p) = m (Xn— ) +0,(1).
We end this section with a multivariate version of Proposition 5.1.12.

PROPOSITION 5.1.14. Suppose X,, = a+ O, (r,) witha € R™ andr, — 0. Ifg: R" — R
with continuous derivatives 0g/0x; in a neighborhood of a, then:

9% =g(2) + 3 2 (@) (Xes — ) + 0, (1),
j=1 "
PROOF. Brockwell and Davis (1991, Proposition 6.1.6). O

5.2. Convergence in Distribution

DEFINITION 5.2.1. We say that a sequence of random vector X,, converges to X and
denote

X, 5 X
if Fx, (x) — Fx (x) for all x € C' = {x: Fx is continuous at x}.

REMARK 5.2.2. Convergence for all x is too stringent a requirement as illustrated by
n = +. We would like to say X, 4 X =0 even though Fx, (0) =04 Fx (0) = 1.

THEOREM 5.2.3. Suppose X,, ~ F,, and X ~ Fy. Then the following are equivalent:

1) X, % X.
(2) [g(x)dE, (x) = [g(x)dFy(x) for all bounded continuous function g.
(3) [et'*dF, (x) — [e® XdF, (x) for all t € R™

(i.e. ¢, (t):=F (eitTX"> — F (eitTX> =: ¢ (t) for allt € R™.)
PROOF. See Billingsley pp.378-383. O

Note: This theorem enables us to prove the Cramer-Wold device:

X, 45X <= A'X,LATX, forall A € R™

PROOF. (=) Apply Theorem 5.2.3 (#2) with g(x) = ¢/} to get
darx, () = oarx (1) = ATX, 5 ATX.

(<) Apply Theorem 5.2.3 (#3) to get
%, (A) = darx, (1) = darx (1) = dx (A).
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PROPOSITION 5.2.4. If X,, 2 X, then

(1) E |et"Xn — eitTX‘ — 0 for all t € R™ and
(2) X, 5 X.
PROOF. (1) Since

B )1 _ 6itT(Xn—X)’ <E ‘1 — O T xyes + 2P (X, — X > 6)

given any € > 0, we can choose § to make the first term less than £/2. Then
choose n to make the second term less than €/2 . Hence the left hand side
converges to 0 as n — 00.

(2) Since || is convex, by Jensen’s inequality,

ez'tTXn i eitT X

Bt Xn _ EeitTX‘ <E 0.

Thus, by theorem (5.2.3)

X, — X.
O

PROPOSITION 5.2.5. (Slutzky’s theorem) If X,, —Y,, =0, (1) and X, 4, X, then

Y, %X

PROOF. For a random vector Z, define ¢z (0) by
¢z (0) = / 2" 2dFy (z)
Then, we have
[y, (t) —ox ()] < oy, (t) — ¢x, (t)] + [dx, (t) — ¢x (t)]
By Jensen’s inequality and the same argument as in proposition (5.2.4)-(1),
9v, (6) = 0x, (8)] < B[t = Y0 5,

Also, since X, LN X, the second term converges to 0. O

PROPOSITION 5.2.6 (Continuous Mapping). If X, 94X and h: R™ — R® s continuous,
then

h(X,) = h(X).

PROOF. Since exp {it"h (-)} is a bounded continuous function,

EeitTh(Xn) . EeitTh(X)‘
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PROPOSITION 5.2.7. (Generalized Slutzky’s theorem) If X, 4 X and Y., & b, with
dim(Y,) = my and dim(X,,) = mq, then

X, 4 X
Y, b /-’
In particular, we have the following special cases:

(1) If my = mo, then X, + Y, % X +b and YIX, % bTX.
(2) If g : R™ xR™ — R® is continuous at every point where the vector (b, X) takes

its values, then g(Y,,X,) 4 g(b, X).

Xn
b

Xn

PROOF. Let Z,, = { Y,

} . Then, Z,, — [ } 250, since each component converges

to 0 in probability. Also Z, LN } since the sequence of characteristic functions

b

SN

Because the mappings (x,y) — x+y and (x,y) — X'y are continuous from R*™ — R™
when m; = my = m, we obtain result (1) from proposition (5.2.6). Result (2) follows
similarly. O

converges. Hence by Slutzky,

Asymptotic Normality

DEFINITION 5.2.8. A sequence of random variables {X,} is said to be asymptotically
normal with mean u, and standard deviation o, if o, > 0 for all sufficiently large n and
if

‘7;1 (X — pin) g Z

, where Z ~ N (0,1). We write
X,is AN( ptn , 02 ).

n
~~~ ~~~
asymptotic asymptotic

mean variance

EXAMPLE 5.2.9. The classical CLT states that if Xy,---,X,, are iid with mean p and
variance o2, then X,, is AN (u, %) ie.
s AN
o
PROPOSITION 5.2.10 (Delta Method). If X,, is AN (u, 0?)with o, — 0 and g is differen-
tiable at p, then g (X,) is AN (g(n),d' () o).

n
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PROOF. Because

X, —
Z, = B 7~ N(0,1),
o
Z,=0,(1).

(Choose a pair of continuity points of F, such that F'(z1) < ¢/4 and F (z3) > 1 —¢/4.
Then for all n > N (¢g),

FZn (21) < % and FZn (ZQ) > 1—%

Forn=1,---, N (¢), there exists v (¢) such that
P(|Z,| >v(e)<e n=1,--- /N(e).
Choose M (¢) > max (v (g),|z1],|22]). Then
P(|Z, > M (¢)) <eforalln=1,2,---.)
Thus,
Z,=0,(1) = X,=p+0,(0,).
By proposition (5.1.12) (g (X) = g (1) + ¢/ (1) (X — 1) + 0, (7).

9(Xn) —g(w) _ g () (Xn )+0p(1)i>N(0,gl(u)2).

On On

EXAMPLE 5.2.11. Let {X,} ~iid (u,0%). Then X, =1 (X; +---

_|_
_ 2,
Suppose i # 0. Then g (z) := i has derivative at pso 1/X,, is AN (i, (—%) ], ie.

Ve (——l> 4 N(0,1).

o \X, H
Moreover since X,, % p (by the WLLN), proposition (5.2.10) implies
X 1
VX, (———)iﬂ\f(o,l).
o Xn M

NoOTE 5.2.12. Although i is the “asymptotic mean” of 1/X,, in the above example, it is
not the limit as n — oo of E (1/X,). In fact, E|1/X,| =00 if X; ~ N (1, 0?).

EXAMPLE 5.2.13. Suppose X1, -+, X,, ~ iid (0,0?). Then
ViXe 4 7~ N(0,1) by CLT
= nx. %0222

where Z? ~ x? (1) since g (z) = 2? is continuous.

Multivariate Asymptotic Normality
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DEFINITION 5.2.14. X,, is AN (@, 3,,) if

(1) 3, has no zero diagonal elements for all large enough n.
(2) ATX,, is AN (AT p,, ATE,A) for all X € R™ such that ATX,X > 0 for all large
enough n.

Recalling the Cramer-Wold device, i.e.

X, %X = A'X, % ATX for all A € R™,
we see that X,, is AN (w,, 3, )where X, satisfies (1) if and only if
)\T (Xn - /J'n) d
A R He) 4 ) 1)
VAT, A (0,1)
for all X such that ATX, X > 0 for large enough n.

PROPOSITION 5.2.15 (Multivariate Delta Method). Suppose X,, is AN (u,2X) with
¢, — 0. If g : R™ — RF is continuously differentiable in a neighborhood of p and
DXDT has all diagonal elements greater than 0 where D = [09:/0xj]x_,,. then g(X,) is

AN (g(p),2DEDT).

DEFINITION 5.2.16. A sequence of estimates T,, = 1), (X1, -+, X,,) of g (0) is said to be
(weakly) consistent if

T, 2 ¢ (6) for all § (where p is under the measure Pp),

and strongly consistent if

T, — g(0) a.s. Py for all 6.

EXAMPLE 5.2.17. (Moment Estimation) Let {Xy} ~iid Py such that Ep|X|" < oo for
all . Suppose m; (§) = EpX{ for 1 < j <rand g(8) = ¢ (my(0),---,m, (0)) where ¢
is continuous. Then

T, (X1, -, Xn) =0 (M, ,m,) = g(f) as. Py,

where
o1 Z” ;
mj = — )(]jC
n
k=1

DEFINITION 5.2.18. A sequence of estimators is said to be asymptotically normal if there
exists p, (0) and o, (9) > 0 such that T}, is AN (p, (0),02(9)) for all 6. i.e.

ren

T, — i (0
Py (M gx) — @ () for all 6.

on (0)
REMARK 5.2.19. Suppose Ty, is AN (1!, (0) 072 (0)). If

ol (0) On

n
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then ﬂ iS AN (/,Ln (8) ,O'n (0)) Since
n n . n , , n
T, — % 0, T, — Mo, My — K

On On ol On
dl + d| d|
N(0,1) 1 N(0,1) 0

DEFINITION 5.2.20. A sequence of asymptotically normal estimators {7,,} is said to be
asymptotically unbiased for g (0) if

i (8) — g (6)
On (0)

Tn - 9(9)

on (0)
and % is called the (standardized) asymptotic bias.

— 0,

in which case
4 N(0,1)

It follows that if both the bias and variance of T}, go to zero, then T, is consistent for its
mean.

PROPOSITION 5.2.21. If ET,, — 1 and Var(T,) — 0, then T, 2 p.

PrOOF. Chebychev’s Inequality and Triangle Inequality. Il
THEOREM 5.2.22 (Multivariate CLT). If {X,} ~ iid (pu, ), then

— 1 —
XnNAN(/,L,—E), whence X, = p+ O,(1/v/n).
n

EXAMPLE 5.2.23. Let {X,} ~ iid P such that Ej | X|*" < oo for all §. Suppose m; (0) =

EgXi for 1 <j <, g(0) =¢(m(0), - ,m,(0)) for some continuously differentiable
function ¢, and define T,, = ¢ (1, - - - ,™m,), where m; := %Z?zl X/. From the CLT,
ml — my (9) '

NG : 4 N(0,%),  where X = (%) = (Cov (Xi, X]))

m, —m, (6)

T

ij=1"
Then, using Proposition 5.1.14, we have

. 1
J
Finally, applying Proposition 5.2.15 gives:

where (assuming 3 > 0)
, 1/ d¢ ) aqﬁ/'&ml
0"(0):E<8m”8m)2 :
! " d¢/Om,
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EXAMPLE 5.2.24. Let X;,---, X, ~T'(a,3). Then EX| = a3, EX? = af? + o?3* =

m —m? s x2_x2
B (oi +a), and VarX, = af2 o(my(0),my(0)) = = 220 mil@ 7 = 222
T2 Then T, is AN(83,02(0)),where

1 [(=2m? — (my—m?3) 1 -1--3

2 1 1 m

0) = — [ 1
0,(0) n ( m2 "1y E 1

and
5 Cov(X1,X;) Cov(Xy, X?)
T | Cov(Xy,X?) Cov(X2 X3)

_ { a3? ala+1)(a+2)8 — aBaB? }
ala+1)(a+2)8 —aBaB?  ala+1)(a+2)(a+3)84

5.3. Asymptotic Comparisons (Pitman Efficiency)

DEFINITION 5.3.1. If /71 (T, — g(6)) % N(0,02(8)) and /1 (T;L,(n)(Xl, LX) — g(9)> 4
N(0,0%(0)), then the Pitman asymptotic relative efficiency (ARE) of {T,} relative to
{T]} is

. n'(n
err )= Jin "

provided the limit exists and is independent of the sequence n/(n) chosen to satisfy

d

Vi (T — 9(0)) = N(0,05(0))
Roughly speaking, ep 1 is the ratio of the number of observations required for the two
estimators to achieve the same precision.

THEOREM 5.3.2. if T, ~ AN (g(e), #) and T! ~ AN (g(e), "iﬁ”), then er.p(0) =
0%(0)
730

a1(0)
a3 (0)

PROOF. Let n' = [n }, where [z] is the integer part of x. Then

Vit (= g(0) = o [n D2 | (12 - t6)

and since LHS % N (0, 02()), therefore
Vi (Ty = g(0)) = N (0,05(0))
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Hence ,
6T7 T (8) = hm —n (n) = Ul (9)

n—oo N 03(9)

provided the limit is the same for all n/(n) such that limn’(n)/n exists and
V(T = g(6)) = N (0,05(6))

Suppose n/(n) is any such sequence, then the LHS of the previous line is equal to

LT~ g0) =[5 2 (2 @ - 900) )

\/W n' 0o \ 01
d|
N(o, Ug(e))
2 , 2
therefore 22 — 1, ie. % — 7. O
n G'O n UO

5.4. M-Estimation Theory

M-estimation is a very general method to derive consistency and asymptotic normality
results for a lot of classical estimators that are obtained by solving a system of equation(s).
This includes e.g., method of moments estimators and maximum likelihood estimators.
The main idea is to write the system as an empirical average, to which the CLT is applied
after a Taylor series expansion. See Serfling (1980, Ch 7) for a classical treatment, and
Van der Vaart (1998, Ch 5) for a more recent coverage.

Background

o Xi,..., X, ~iid Fy(x), fo(x), with 0 = (61,...,04) € Q C R? let 0y denote its
true value, and 6,, = 6,,(X1, ..., X,) its estimator.
e Define 0, as an M-estimator:

A

1 n
b, = M, (0 M(0) = = 0
- argrglezg( 2 (0), 2(0) pa m(x;,0),

where m(x,0) is a scalar concave function of # (which ensures the maximum
exists, but can be relaxed).

e Often 0, is found as a root of the equation that results from differentiating
M,(0):

0

Wo(6) = 5 M) = 1S (i 6) =0,

where ¥ (x,0) is the vector-valued map
0
101({5‘7 ) ~ Om(z,0)

0= m(z,0).

’(/)(:L‘,Q) = :
Qﬂd(l’,e)
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e In both cases, the true value 6, satisfies:

0y = arg max Ey,m(X,0), and Ey (X, 0) = 0.
S

(Note: finding the appropriate m(.) and/or 4(.) functions may be challenging.)

EXAMPLE 5.4.1 (Estimation of a location parameter). For estimating a measure of loca-
tion like the mean (1), median (§y5), and a quantile in general (&), proceed as follows:

e For ;1 use m(x,0) = —(xz — 0)? and ¢(2,0) = (z — 6). Then note that i =

solves:
n

1

- ;(x )

e For &5 use m(z,0) = —|x — 0| and ¢(x,0) = 1(z > ) — 1(z < €). Then note
that &5 solves:

%iu(xi S 0) — 1(z; < 0)] = 0.

i=1

EXAMPLE 5.4.2 (Maximum likelihood estimation). Using m(z,0) = log fy(x) leads to
the log-likelihood and score functions:

n

! 0 log f(z;,0) = 0.

1 n
i=1 i1

Consistency. Consistency of 6, follows if the functions {m(z,8) : 8 € Q} or {¢;(x,6) :
0eQ j=1,...,d} are Glivenko-Cantelli (Van der Vaart, 1998, Ch 19). A simple set
of sufficient conditions for this is:

(i) Qis a compact set; and
(ii) the maps 0 +— m(x,0) or 8 — ;(z,0) are continuous Yz and Vj, and are
dominated by an integrable function H(x) in the vicinity of 6y; i.e.,

m(x,0) < H(x), Y;(x,0) < H(x), with FH(X) < oc.
(Note: H(z) can depend on 6y but not 6.)

Asymptotic Normality (AN). Under mild regularity assumptions 0, is AN:
(5.4.1) Jn (én . 90) L N0,V W, Vi ")

where the d X d constituent matrices in the asymptotic covariance can (under appropriate
conditions) be expressed either in terms of derivatives of the m(.) or 4(.) functions
evaluated at 6y, as follows:

om(X, 9)) (am(x, e))T,

W, = Egtp(X,0)9(X,0)" = Ey, ( 00 00
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and

a¢(X7 0) 82E90m<X7 0)
Voo = Eoo | —5g7 B 90007 ‘

The regularity conditions needed here are not easy to state; most importantly they require
continuity (in probability) of the map 6 — )(+,0), that Vp, be nonsingular, and that the
collection of maps = — ¥ (z,0) form a Donsker Class (Van der Vaart, 1998, Ch 19).

Note: If changing the order of differentiation (w.r.t. ) and integration (w.r.t. z) are
permissible, then the two definitions of Vj, above coincide. (This fails e.g., in the case of
quantiles, see below.)

PRrROOF. A sketch of the AN proof in the d = 1 case is as follows. Taylor expand
Y (zx,0) about 0y:

Z@/J(xi, 0) = Z@/J(%’, o) + (0 — 6y) Zvj)(:pi, 6p) + remainder.

Now substitute § = 60,,, whence the LHS is zero since 6, solves Z@D(x“én) = 0, and
since it can be shown that the remainder is 0,(1), we obtain, after rearranging terms and
multiplying by /n:

n — Up) = n = —.
Now analyze the numerator and denominator terms separately. For the first we obtain
that

A=+n (—% ZQ/)(Xz‘,@o)) =vn (Y, —0),

where Y; = —w<X,L, 90) ~ iid (,U,y7 0'}2/) with My = —Egow(X, 90) = 0and 0'32/ = VCLTQOw(X, 90) =
Eg,0*(X, 6p). Thus by applying the CLT we obtain: A % N(0,02). For the denomina-
tor, apply the WLLN to Z; = ¢(X;,0) ~ iid (uz,0%), where puz = Fp¢(X, 0p), to see
that: B % uy. Putting it all together using Slutzky gives:
N(0, 02 2 By, (X, 0
V(e —gp) & H07v) N(O oy _ Eut (X, ) )

Kz

W [Egyth(XG,60)]?
O

EXAMPLE 5.4.3 (Estimation of mean). For Xy,..., X, ~ iid (uo,03), use ¢(z,0) =
(x - ) for estimation of yg via the sample mean X, implying 1 (z, ) = —1, so that
E, (X, u) = —1. Now, E, *(X,u) = E,(X — u)* = o3, and thus we obtain the
classical CLT result:

% d EH0¢2(X7 MO) 2
n(X — o N |0, - =05 |-
Vil =) = ( (B (X. 1) )
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5.5. Example: AREs of Mean, Median, Trimmed Mean

PROPOSITION 5.5.1 (AN for a Quantile). Let F(x) be a cdf such that F(z) is differentiable
at &, = F~(p), the p-quantile of F, and that f(&,) = dzg’:) ‘wzgp > 0. Let X4,...,X,
be tid F and let Yy < --- <Y, be the order statistics. Then, if [np] denotes any of the

integers on either side of np, we have for any 0 < p < 1:

p(1 —p)
nf2<fp> ) '

Y["P} ~ AN (gpa

PROOF. The p-quantile 6y = &, is an M-estimator with m(x,0) = (1—p)(x —0)1(z <
0) — p(x — 0)1(x > 6). To see why, consider:

0

Egm(X.0) = (1 p) /

—0o0

(r —0)dF(z) — p/eoo(x —0)dF(z) := g(0).

Differentiating using Leibnitz’s Rule:
d [
—/ h(x,0)dz = h(b,0)b'(0) — h(a,0)d'(0) + / —h(x,0)dx
df Ja) at) 00
gives,
g(0)=—-A=p)FO) -0 +[1=-F@Olp=p—F(©O), ¢0)=—f(0) ="V,

whence we note that 6, = £, = arg max Ep,m(X,0). To obtain Wjy:

8 0) — (e, ) = p(e > 6) — (1~ p)1(x < 0)
V¥ (x,0) = p*L(z > 0) + (1 — p)°L(x < 0)
o) 6o
Wy, = Eg,00*(X, 0) :p2/9 dF(x) + (1 —p)2/_ dF(x)

=p(1=p)+ (1 —=p)’p=p(-p)
Thus invoking the result in (5.4.1):

-1 -T _ E90¢2<X7 9) _ p(l _p)
Veo WGOVOO - [g//(eo)]z - f2(§p) )

g

PROPOSITION 5.5.2. Suppose F(x) is continuous at the quantiles &,, and &,,, and that
f(&) >0 and f(&,) > 0. Then, for 0 < p; < py <1, we have that

b v ([ ] Lnd Sl e " e )

[np2] n
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PROOF. This is a d = 2 version of the previous proposition, § = (0,6,), where
0o = (&, &p,), and we take

Z [(1 = pj)(x—0;)L(z < 0;) — pj(z — 6;)L(z > ;)] .
Then, Egm(X,0) = g1(61) + g2(62) := g(0), with

50) = =1 [ e =0)F@) o, | (e - 6,)dF(x),

—00 j

which implies

Vo —
T 90007 — /(&

It’s now easy to see that 6y is a root of the Jacobian of g(6), and that its Hessian Vj,

is negative definite (hence nonsingular), whence Fy,m(X,0) is maximized at 6. The

elements of Wy, follow similarly to the d = 1 case:

am(x,e) _ |:p11($ > 01) — (1 —pl)l(x < 01):| _ |:’¢1(l‘, 91):|
06 pgl(l’ > 92) — (1 —p2)1($ < 92) @Dz(l’, 92) )

so that, upon noting that Eg,13(X,0;) = p;(1 — p;) and Eg,tp1 (X, 01)1ha(X, 02) = pi(1 —
p2), leads to

0%g(0) :{—f(ofpl) 0 )}

6=0q

_ Pi(X,06,) U1 (X,01)02(X,02)]  [p1i(L—p1) pi(1—p2)
Woo = Eoy [w1<x,91>w2<x,92> U2(X,0,) }— {plu—m) pz(l—p2>]'

Computing %EIWQO‘/OET then leads to the stated asymptotic covariance matrix. Il

PROPOSITION 5.5.3 (AN for Trimmed Mean). Let F'(x) be symmetric about 0 and suppose
30 < ¢ < oo such that F(—c) = 0, F(c¢) = 1, and that f(x) is strictly positive and
continuous on (—c,c). If Xq,..., X, are iid F(x — ), then for any 0 < a < 1/2

2
X, ~ AN (0, @> ,
n
n—[naj

_ 1 9 f1-a
Xo=—%— >, Y = £2f(t)dt + ag?
n — 2[nal % T T =200 {/o fe)dt bl

i=[nal+1

where

Y, < -+ <Y, are the order statistics, and &, = F~1(a).
PROOF. Omitted, but can be proved similarly via M-estimation. O

These results can now be used to effect asymptotic relative efficiency calculations.
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REMARK 5.5.4. Suppose Xi,..., X, ~iid F(z —0), F(0) =1/2, and f(0) > 0. Then
~ . 1
X = medlan(Xl, cee ,Xn) = X([n/g]) ~ AN (0, W) .
If EX; =0 and 0? = VaryX,, then from Example 5.4.3, X ~ AN(0,0%/n). Therefore,
ex. x = 40°f2(0). So if 20 f(0) < 1 then X is more efficient, whereas if 20 f(0) > 1 then
X is more efficient.
REMARK 5.5.5. Again assume X, ..., X, ~iid F(x—0), F(—c) =0, and f is symmetric
continuous and positive. Then, since X, — X as a1 1/2 and X, — X as a | 0:
1
L9 R S
}XIEO'Q—F(O), and IOIC‘IL%O'O(—O',
so that the ARE’s of X and X, relative to X are:

ex, x(f) =40%f2(0),  and  eg, x(f) =0%/a2.
Defining the following mixture of two normals
1 2 1 2
—x?/2 —xz? /21
e + € e ,
V2T TV 2T

some numerical computations for different f’s and a’s then lead to the following AREs
of X, relative to X:

T(e,7)=(1—¢)

f@)\a|.125 .25 5
——e "7 94 84 2-64
1
) 00 00 o0
1e"M/211.40 1.63 2

1,3)| .98 .89 .68
5,3) | 1.19 1.09 .83
t3 | 1.91 1.97 1.62
ts | 1.24 1.21 .96

REMARK 5.5.6. X is inefficient for heavy tails. This is because it is sensitive to one or
two extreme observations.

REMARK 5.5.7. The optimal o depends on the distribution sampled. For large n the
distribution can be estimated and « chosen accordingly as a.



CHAPTER 6

Maximum Likelihood Estimation

Assessing the performance of different types of estimators (UMVUE, MRE, Bayes, MLE)
is usually difficult in finite samples. This task is made considerably simpler as n — oo,
and especially for the Maximum Likelihood Estimator (MLE). This chapter discusses
the various notions of asymptotic assessment and optimality, and establishes the relevant
classical results for the MLE.

Efron & Hastie (2016) poignantly summarize the success of maximum likelihood estima-
tion in the following quote:

If Fisher had lived in the era of “apps”, maximum likelihood estimation
might have made him a billionarie. Arguably the 20th century’s most
influential piece of applied mathematics, maximum likelihood continues
to be a prime method of choice in the statistician’s toolkit. Roughly
speaking, maximum likelihood provides nearly unbiased estimates of
nearly minimum variance, and does so in an automatic way.

6.1. Consistency

Suppose that X1, Xo, ... areiid Py, 0 = (61,...,04) € Q C R% and make the following
assumptions.

AU) Pg?épg/ 1f97£9/

Ay) Py, 0 € Q, have common support.
Az) - Po(x) = f(,0).

A3) The true parameter 6, € int(<2).

DEFINITION 6.1.1. L(w, §) = [} f(zs, 0) is called the likelihood, and {(x, 0) = 3} log f(x;, 0)
is the log likelihood. An estimator 0 of 6 is called a (global) MLE if

Uz, 0(x)) = sup {(x, 0).

0eq2

The MLE of ¢(6) is defined to be ¢(f).
121
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Likelihood equations. If 0 € Q and € is an open subsect of R? and ¢ is differentiable
on £, then 0 (if it exists) satisfies

ol -
o (2.0@) =0, 1<j<a
In general
VQg(IB, 9) =0
may not have a unique solution. Sometimes the likelihood is unbounded and the MLE
does not exist.
EXAMPLE 6.1.2.
1 —e 0<z<r
F(:L" 9) = { 1— e—a‘r—b(az—‘r) x>T
0 €Q={(ab) e (0,007}
f(:L‘, 9) = aeiaxf[oﬁ) (Z‘) + beiaT*b(x*T)[[T’m)(:C)

f(x,0) _{ a x<T,

Hazard rate = T(J;Q) = b Z -

k
Uz, a,b,T) Z —ax(;) + log al —I—Z at — b(z) — 1) + logh]
1

k+1
where x(;) is the ith order statistic, and k = #{z;: x; < 7}.

and 7 1 x(y), we see that {(x,a, I(;

)~ T’

T) —>o0asT T

T(n), and hence a global MLE does not exist. However if we restrict 7 < x(,_;) the
constrained MLE exists and is consistent.

For any fixed a, letting b = = 1—7

LEMMA 6.1.3. Let

f(X,0;)

f(x,0;)

[ 1o L w0t

= Kullback-Leibler discrepancy of f(-,6;) relative to f(-,6;)

Then 1(6;16;) > 0 with equality holding if and only if 0; = 6.

1(6;10;) = —Ep, log

PROOF. Jensen’s inequality gives

f(X,6)) f(X,0;)
“Hados T gy = T8 B g

—log/ f(z,8;)du(z)
{z:f(x,0;)>0}
> —logl=0

v



6.1. CONSISTENCY 123

Equality holds if and only 1f f ) is constant a.s. Pp,, and f{x (0,50} flz,8;)du(x) = 1.

The latter equality implies Pg < Py, and the former equality implies Py, = Py,, since
[ ef(z,0;)dp = 1 implies that ¢ = 1. O

Note: All theorems in this section apply only to the one-dimensional case of 2 C R,
but they are the easiest to check! For multidimensional versions, use the M-estimation
method in §5.4.

THEOREM 6.1.4. Suppose Q = {0y, ...,0c} is composed of finitely many elements, and
conditions Ay — As hold. Then the MLE 0, = 0(Xy,--- ,X,,) is unique for sufficiently
large n and 0, == 6.

PROOF. Suppose that 6y is the true parameter value. Then lemma 6.1.3 and the
SLLN imply that

——Zlog — 1(6;]60) a.s. Py, j=1,... k.

Hence for n sufﬁmently large
I & f(X5,0;) 1
- loc 222797 5 " 1(6.10
"21: % F(X00) > ! ilfo)
(6.1.1) ie. 0(X,0)) —0(X,0;) > gf(ejwo) > 0if 0; £ 0.
So for all n sufficiently large ¢(X, ;) has a unique maximum at ¢; = 6,. Hence Orrr —

Oy a.s. Py,, i.e. éML is strongly consistent. O

REMARK 6.1.5. Theorem 6.1.4 may not hold if € is countably infinite (see example on
page 410 of TPE).

THEOREM 6.1.6. Suppose conditions Ay — As hold and for almost all x, f(x,0) is differ-
entiable with respect to @ € N with continuous derivative f'(x,0), where N is an open
subset of €2 containing 0y and 2 C R. Then with Py, probability 1, for n large

f’ XZ79
00, X)=> )

has a root én and én — 0y a.s. Py,.

PROOF. Choose € > 0 small so that (6y — €,0y + €) C N and define
Sp=A{x: (0y,x) >0y —e,x)and (0, x) > (0 +€,x)}.

From eqtn (6.1.1), a.s. Pp,, £ (6o, X) — € (0o £ €, X) > 0 for all n large. Hence there exists

0,(X) € (By—¢, y+¢€) such that £/(d,) = 0. If there exist more than one 6, € (fo—e, fo+e),
choose the one closest to 0y (the set of roots is closed since f’(x,0) is continuous in 6).
Call this root 0%. (Note that there could be 2 closest roots in which case choose the
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larger.) Let A, = {X = (X1, Xo,...): 305 € (0 — €,00 + €) s.t. £(07) = 0, V sufficient
large n and 6} is the closest to 6y }. Then Py (A.) = 1. Define Ay = limj_,o Ay/. Clearly
Py, (Ag) =1 and on A, é: — bp. O
REMARK 6.1.7. Theorem 6.1.6 says there exists a sequence of local maxima which con-

verges a.s. Py, to 6y. However since we don’t know 6y, we can’t determine the sequence
unless ¢ has a unique local maximum for each n.

COROLLARY 6.1.8. If ¢'(6) = 0 has a unique root 6, for all X and for all sufficiently
large n, then

én — 0y a.s. Py,
If in addition ) is the open interval (0r,0y) and ¢'(0) is continuous on  for all X,

then 0,, mazimizes the likelihood (globally), i.e. 0, is the MLE and hence the MLE is
conststent.

PRrROOF. The first statement follows straight from theorem 6.1.6.

If 6, is not the MLE, then
0(0) — supl(a) as 0 | O or 01 0y

But 6, is a local max by the proof of theorem 6.1.6 and hence £ must also have a local
min and ¢ (0) = 0 for some 0 # 6,,, a contradiction. So 6, is the MLE. O

As we might expect, under mild conditions the MLE exists, is unique, and consistent for
an exponential family.

THEOREM 6.1.9. Consider a full-rank s-parameter exponential family in canonical form
where the density can be written as

p(z,m) = exp {ZW@'TZ'($) - A(n)} h(z),  nen),

and let the natural parameter space N be an open set. Let x is the observed data vector
from a sample from this model, and t be the oberved value of the complete and sufficient
statistic T = (T\(x), ..., Ts(x)). Then:

(i) The MLE exists with probability tending to 1 as n — oo.
(ii) The MLE is consistent.
(iii) If the density function is continuous, then the MLE ) exists almost surely, and

satisfies the equation:
9A(n)

=1t.
o |,

PRrROOF. This is a combination of Theorems 2.3.1, 2.3.2, and 5.2.2 in Bickell & Doksum
(2015). O
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EXAMPLE 6.1.10. f(z,0) = e ", 0 < # < 00, 0 < 6 < co. Obviously 6, = 1/z — 0

a.s. by SLLN (and continuous mapping), since EX = 1/0. However let us show it by
applying Theorem 6.1.9. For a random sample x the density is:

f(x) =exp{—6nz — (—nlogh)},
from which we identify n = —0, t = nz, and A(n)

—nlog(—n), whence
0A(m) _ n

- =nz, — n=-1/z, O,
on n

Since 2 = (0,00) is open we have immediate consistency of the MLE.

~

6.2. Asymptotic Normality of the MLE

THEOREM 6.2.1. Suppose that X, ..., X, are iid Py,, 0, = 0,(X1,...,X,) is the MLE
of the true parameter 6y € R?, and the following conditions hold:

(i) Oy € int(Q2) C Q, and the model density f(x,0) is 3 times differentiable w.r.t. 0

in some open neighborhood of 6.
~ Py,

(iii) B, g, log f(X.00) =0, 1 < j < d.

(iv) The Fisher information matrixz per observation, defined as

0 0 T o?
I(6h) = Eg, (%logf<X7 90)) (%bgf(Xa 90)) ] = —FEp, {W log f(X, 90)} :

is non-singular. (Note: this is the 11(0y) defined in Ch. 2.)
(v) There exists 6 > 0 such that Eg,W5(X) < oo where

82 2
Ws(X) =

aeaaeﬁ log f<x7 9) - aeaaeﬁ log f(x7 90)

sup

10—0p1<8 1<a.p<d

(vi) % log f(x,0) is continuous in 0 for all x.

Then

Vi (B = 00) % N (0,17 (60))
NOTE 6.2.2. If £(0) is the log-likelihood for X7, ..., X, under the above iid model, then

1 "
](90) = —EEQOK (60)

PROOF. From (vi), W.(X) | 0 as € | 0. Hence from (v), Ey,W.(X) ] 0 as e ] 0.
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Now for some ¢ between 6, and én,

1 0 -
(6.2.1) — Z — logf x;,00) = - z 0. log f (x4, 6,)
1 n d 82
z 1 . 0 _
(The first term equals 0 since 6,, = M LE.)
We will show that
(6:2:) LS log f(w.6) = ~Loslh)
2. — ——— log f(x; —
n - aeaaeﬁ g (2] Ocﬂ 0
Write
I~ O 1~ &
n 2 30,98, 108 (@ 8) =1 D 75 108 (i, 00)

2 2

1 0 )
T Z {aeaaeﬂ log f(w:, #) = 5578, 108 /(@1 f0)

The first term on the right hand side goes to —I,5(6) in probability by the WLLN. For
any ¢ > 0,

Py, (|12nd term| > ¢) =Py, (|| ¢ — 0o ||> €, |2nd term| > ¢) + Py, (|| ¢ — 0o || < €,|2nd term| > ¢)
<P, (I ¢ — b0 [|>€)
> )

1

+ Py, | — Z sup
10—60ll<e

where I < Py, (H b, — 0o ||> e) —0,and IT = Py, (132, Wil;) > ¢) < LEp Wo(X) = 0

as € . 0. This proves (6.2.2).

2 2

50,08, 281w 0) = 55 50

log f(zi,00)

=I+1I

Now write (6.2.1) in matrix form

n

[ log £(X;, 90)} = (=1(6o) + 0p(1)) (90 - én>

=1

By CLT,
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It follows that

Jn (én - 90) = (I(60) + 0,(1

%\

d

Z glogf (24, 600)
= N (0, 17 (60)1(80) I (60)) -

O

NOTE 6.2.3. Condition (v) can be replaced by: 3 > 0 s.t. Va in the support of f(z,6)
’a—glogf(x 9)’ < My p(x)
00,050, I

for any 6 with || § — 6y ||< 0, and where Eg M, 3,(X) < oo. Condition (vi) can be

replaced by:
d 2
Olog f(x,8)
E@O E (a—ej < 00.

j=1
(See Van der Vaart, 1998, Theom 5.41.)

EXAMPLE 6.2.4. One parameter exponential family

flism) = e ADn(z;)

The likelihood equation ¢'(n) = 0 implies + >~ T'(z;) = A'(n) = E,T(X,). Since A"(n) =
I(n) = Var,T > 0, A'(n) is strictly 1ncreasmg so that ¢'(n) = 0 has at most one solu-
tion. By Theorem 6.1.6 and its Corollary, 7 — n a.s. Also %log flz,m) = A"(n) is
independent of x and continuous. Hence by Theorem 6.2.1,

Vit =) % N 0.1 m) = N (0.5 )

In fact, this is a special case of a more general result, which complements Theorem 6.1.9.

THEOREM 6.2.5. Consider a full-rank s-parameter exponential family in canonical form:

p(z,m) = exp {ZmTi(%) - A(n)} h(z),  nen),

and let the natural parameter space N be an open set, with T = (Ty(x),...,Ts(x)) the
complete and sufficient statistic. Then, iof ) is defined to be the MLE, if it exists, and
some fixed value otheriwse, we have that

Vi(h—-n) 35 N(0,17'(n), where I(n)= Var(T)=

PROOF. This is Theorem 5.3.5 in Bickell & Doksum (2015). O
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EXAMPLE 6.2.6. (Censoring). Suppose Xy, -, X, ~ #dE(3) (i.e. EX; = 0), and
suppose we observe the censored data Y; = min(X;,T) with T fixed. Let p be the
measure on [0, 7] defined by

H(A) = /A do + 1o(T)

(Lebesgue measure plus unit mass at 7).

Then the density of Y with respect to u is

Le—y/0 0<y<T
P(Z/ae):{ ng/e y="T

e (=FR(X; >T))
2 20 (logf+4) 0<y<T
el ,0) =12 %2 0 -
ganloern0) = { THEOTD U2y
A+ % 0<y<T
=1z y=T
32
1(0) = —Eﬁlogp(yﬂ)
Tr 1 29\ 1 2
— _ “d ) = _—y/o -T/0
/0(92+63)9 d+936
1
:0—2(1 B_T/G)
0 —24+% 0<y<T
—~ - 3T 9 =

Since 0y € (0,00), |55 5 52

Check that 6, 2> 6, under Py,. Then by theorem (6.2.1)

Vi (8 ) gN(“ﬂ %)

o logf(y,@)‘ < Ay + B for & < 0 < 3% and Ey(Ay + B) < .

6.3. Asymptotic Optimality of the MLE

Under the conditions of Theorem 6.2.1, the MLE satisfies
Jn (én . 90) 2 N (0,171(6))

We will show now that I71(6y) is the minimal attainable covariance matrix for a class
of asymptotically normal estimates. (Note. As in section 6.2, I(f) denotes the Fisher
information matrix per observation.)
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THEOREM 6.3.1. Suppose {T,,} is a sequence of asymptotically normal estimators of 6
with Vare(T,,) < oo for all n, and define

9, 0
20 = A = ()
If all the following conditions hold:
(i) v (T, =) 5 N (0.5(0)),
(ii) TLCO’U9< W) > ATTHO)A,, (A> B <= A — B psd, as defined earlier),
(iii) 36(0) such that sup,, Eq || v/ (T, — 0) [|**°< o0,
(IV) An — Id><d;

¥(0) > I740).

PRrROOF. (iii) implies that {/n(T, — 0)} and {n(T,, o — 0a)(Tn s — 05)} are uniformly
integrable (Billingsley, p. 338). Hence from (i), if Z ~ N(0,%(9)),

Eov/n(T, — ) — EZ =0
and
nCov(T,) = Cov(Z) = %(0)
(Billingsley, p.338). As n — oo, the LHS of (ii) — 3(6), and the RHS of (ii) — ()
by (iv). Therefore, 3(6) > I7(6). O

NOTE 6.3.2. Assumption (ii) will be satisfied under the conditions of corollary (2.4.4)(in
the UMVU section).

DEFINITION 6.3.3. If {T,,} satisfies (i) with 3(0) = I'(6), then it is said to be asymp-
totically efficient.

99i

COROLLARY 6.3.4. Let g = (g1, -+ ,9,)T: Q — R" have continuous derivatives S0

1<a<d, 1<i<r. Define

dg dg;
AO) == |22
9) = 3¢ {891 ] = d, j=1,

and assume that the sequence {T,} of estimators satisfies

(i) v (T, = g(6)) = N (0,2(6)),
(ii) Covg( ) = ALO)I7H(0) A (0), where A, (0) = 2 EpT,,
((1113 36(0 ) > 0 such that sup,, Eq || /n (T, — g(0)) ||**°< o0,
then

¥(0) > ATIHO)A
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PROOF. The same as the proof of Theorem 6.3.1. ((ii) again holds under the condi-
tions of Corollary 2.4.4.) O

Next we show that g(én), where 6, = MLE(0), achieves the lower bound in Corollary
(6.3.4) provided the conditions of Theorem 6.2.1 hold.

COROLLARY 6.3.5. Suppose \/n <9n — 9) 4 N (0,175(0)) and g;/00; is continuous for
1<5<r, 1<i<d, then

9(0,) is AN <g(9), %ATI‘l(Q)A) .

PROOF. Since

a0 (3)
9(0,) —9(0) = &7 (8, 0) + o, (%)
- (g(én) _ g(e)) 2 N (0, ATI1(0)A) by Slutzky.
0

EXAMPLE 6.3.6. Suppose X,---, X, are iid lognormal(u,c?), (i.e. Y; = logX; ~
N(p,0?)) with 02 = 1. The MLE of p is i, = £ 31" | log X;. Suppose g(u) = EX; =
e t1/2 (Set A = 1 in FeMt = MtNe?/2 o pX) = ento?/2),

Consider the two estimators of 6 := g(u)

b = g(jin) = Y2 (MLE)
and

0, =

S|

n
ZXi (Moment estimator).
1

The Fisher information for p in X; = the Fisher information for p in Y; since the trans-
2
formations Y; = log X is one to one. So it equals £, (% log f(Y5, ,u)) =E,Y,—p?=1

(notice log f(Y, ) = —3 In 27 — M) Therefore

Vi (6, =0) 5 N (0. A1 ()2
where A = %g(u) = et 1/2 e,

Vi (6, = 0) 5 N (0,4
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On the other hand, for the moment estimator én = %Z X;, we have
Jn (én - 9) 2 N (0,Var(X,)) = N (0,¢* (e — 1))

(EX? = Ee?¥ = (MGF of N(u,1) evaluated at A = 2) = €22, therefore Var(X;) =
e21+2 _ (e“+1/2)2 _ 62“+1(e ~ 1))

The ARE of 6, relative to én is thus
ARE(8,, 6,) = 1/(e — 1) = .582

The sample mean thus has poor ARE as an estimator of the mean of a log normal
distribution. (The log normal distribution has heavy tails so this is not too surprising.)

EXAMPLE 6.3.7. (Hodges, TPE, p.440) X, ---, X, ~uid N(0,1), I(f) = 1. Define

X, if |Xa|>n-1A
Tn: . < _1/4
0 if |X.<n

Then, from a homework problem, T, is AN(6, @), where v(f) = 1 if § # 0; and 0
if @ = 0. So v(f) < I(f) at 6 = 0 and the parameter value 0 is called a point of
superefficiency. Note the following:

e Theorem 6.3.1 does not apply to this example, since condition (ii) fails.
e T}, is not uniformly better than X, for finite n, for example 6, = n-V4 =

Ep (T, —0,)* = 0o > 1 =lim,_, By, n(X, — 0,)*

REMARK 6.3.8. LeCam (1953) showed that for any estimator satisfying
NG (én - 90) 4 N (0, 0(0))

the set of 6’s where v(0) < I(0)~! has Lebesgue measure zero. (See Theorem 2.6 in TPE.)

Iterative Methods Suppose we have a sequence of estimators 6, such that

~ 1
=t + 0, 7o)
Set
0(6,)
Then

0'(6,) = €'(80) + (6 — 60)L"(6;)
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where 6* is between 6y and 6,,. Thus

Vi (T, — 6) = Vi (én - ”9:"))

gu(gn)
_ i, U)o (6)
_\/ﬁ(e" ’ (8, (6 90)4//@))
t'(6o)

-1~ )

Under the conditions of Theorem 6.2.1

J=000) % N (0.1(60).
i”(én) 2y _1(8,) and
L) % —1(0y).

Hence the term in square brackets is 0,(1).

Thus

—Lyp

Rig — _vat %)
%6’/(%)

and so we have proved the following theorem.

+0,(1) S N (0,17'(6p))

THEOREM 6.3.9. Suppose that (Ag)-(Az) and all conditions of Theorem 6.2.1 hold, with
the possible exception of (ii), and that 0, is \/n-consistent estimator of 6, i.e.

0, =60+0, (7).
Then,

7 =g _ L)

g//( n)

is asymptotically efficient.

COROLLARY 6.3.10. If I(-) is continuous then the estimator

T, =0, + £(6n)
nl(6,)

15 asymptotically efficient.
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PROOF.
C0) | (8
n (T, —T,) =+/n — + =
_ 1
:e’(en)( e, L )
"(0,) nl(6,)
0(6,) [ 1(8,) + £
Vi \1(,) 20
= 0p(1).
(The first factor is O, (1), the numerator of the second factor is 0,(1) and the denominator
Ly 1(6y)%) O

EXAMPLE 6.3.11. Location family. Suppose that X, X5, .-+ are iid f(z — 0) where
f is differentiable and symmetric, f(z) > 0 for all x and f’ is continuous. Then the
conditions of Theorem 6.1.6 hold

Ao+ Py # Py, 0 # 6o

A; : common support

Ay : 22 (z) = f(z— )

Az 0 €int(Q2) = (—o0,00)

n

(6.3.1) 00, X)=>" H =0

has a sequence of roots 0, for n large such that 6, — 6y a.s. Pp,. Since £(0,X) — 0 as
0 — +o0, £(f, X) must have a max, however there may be several solutions of (6.3.1).

Provided f(z — ) satisfies conditions (v) and (vi) of Theorem 6.2.1, i.e.

]<oo
82

and gz log f(x — 0) is continuous in @ for all z, then all the conditions of theorem (6.2.1)
(apart from (ii)) are satisfied. Also X is AN (6, %2), and hence

2 2

0

Eq, log f(x — 6))

sup
|6—60|<5

X =0+ Op(%).

The corollary of Theorem 6.3.9 therefore implies the asymptotic efficiency of

S e
Tn = Xn + ! f({(1 Xn)
nl(X,)
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where

10~ [ (fcl((yy)))Qf(y)dy.

NOTE 6.3.12. The significance of this result is that, e.g. in Example 6.3.6 (lognormal),
if the likelihood has multiple roots (so one doesn’t know which to take), Theorem 6.3.9
and Corollary 6.3.10 say that one gets just as good an estimator (asymptotically), by
starting with a \/n-consistent one (e.g., the MOME X), and using 7, obtained from one
iteration of Newton-Raphson.

6.4. Asymptotic Efficiency of Bayes Estimators

EXAMPLE 6.4.1. Suppose X ~ Bin(n,p), with p ~ B(a, b), then from Example 4.1.4, the
Bayes estimator of pis T), = (a + x)/(a + b+ n), and hence:

\/ﬁ(Tn_p):\/ﬁ(g_p)jLL {a_(mb)ﬂ =S, + S,

a+b+n

Note that Sy 4, N(0, p(1—p)) by CLT, and since X/n 2 p by WLLN, then we have that
S — 0 as n — oo. Thus both the Bayes estimator 7;, and the MLE X/n have the same
limiting asymptotic distribution.

Questions:

e Does this limiting result also hold for an arbitrary prior?
e And does it extend to more general models (not just the Binomial)?

The answer to both questions is YES, but requires some regularity conditions. (In the
ensuing, let 6 € Q denote the d-dimensional parameter vector, and 6y its true value.)

Regularity Conditions:

(B1): The log-likelihood function £(0) satisfies all the statements and assumptions
of Theorem 6.2.1 (asymptotic normality of MLE).
(B2): Given € > 0, 36 > 0 such that

P (sup{|Ry(0)/n| : |0 — 6| < 6} =€) — 0, asn — oo,

where R, is the remainder term in a Taylor-series expansion of £(f) about 6,

0(0) = £(6y) + (0 — 6o)l'(6o) (0 — 00)*[nI(6o) + R, (0)],

_ 1
2
which satisfies R,,(#)/n 2 0 as n — oc.

(B3): Given § > 0, Je > 0 such that

P(sup{w):lﬂ:\e—%]Zé}g—e) — 1, asn — oo.
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(Controls the behavior of ¢(f) at a distance from 6y; important since Bayes
estimators involve integration over entire range of 6 values.)

(B4): The prior density 7(6) on 6 is continuous and positive for all § € Q.

(B5): E;|O] = [|0|7(0)db < .

The following lemma establishes that under these conditions the posterior is AN:

El(eg) 2 1
m(0|x) ~ AN <,un =0y + (6]’ 0. = 100, )) :

LEMMA 6.4.2. If n*(t|a) is the posterior density of t = /n(0—T,), where T, = 0+ %

we have the following two results, where ¢(-) is the pdf of a N(0,1). M 90)
(i) If (B1)-(B4) hold:
7 (te) — /T(00)¢ (t\/I(HO))‘ dt 2 0.
(ii) If (B1)-(B5) hold:
/( 7 (t) — /T(00)é (t\/zwo))] dt 2 0.
NOTE 6.4.3. (i) and (ii) i 7 (t) — \/1(90)¢(t\/1(90))‘ dt 2 0.
Proor. TPE Theorem 8.2. OJ

THEOREM 6.4.4 (Asymptotic Efficiency of Bayes Estimators). If (B1)-(B5) hold, and if
0,, is the Bayes estimator under squared error loss with prior pdf w(0), then:

VB, — 60) % N (0, 171(6y))

so that 0, is consistent and asymptotically efficient.

PRrROOF. Note the following relation, with 7}, as defined in Lemma 6.4.2:

V0, —60) = vVn(0, — Tp,) + /n(T, — 6y).
Now, from the proof of Theorem 6.2.1:

0(0y) a d 1
m — N(0,1), = V/n(T, — 6y) — o

N(0,1) ~ N (0,17 (6p)) ,

whence we only need to show that \/ﬁ(én —T,) 2 0. Now, under squared error loss:

0, = /07r(0|a:)d0

= /(Tn +t/v/n)m*(t|x)dt, (transforming 6 — t = /nf — \/nT,,),

= T+—/t7r (t|)dt
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which implies /n(f, — T,) = [tx*(t|z)dt. Finally, and noting that [yé(y)dy = 0
(integral of an odd function), we have:

Vnlb, —T,| = /tﬂ (t|x) dt—/t\/] (60) (t\/](HO))dt‘
- /‘ { (t]z) — /T(Bo)p(t/T Hdt
< [t [{mttlo) — TGO/ TED Y|t (vl < el ol

o0, (by Note 6.4.3).

O

As we would expect, Bayes estimators in the context of exponential family models are
asymptotically efficient.

EXAMPLE 6.4.5 (One parameter exponential family).

f(x,0) = T@=AOp (1) = canonical form
From Theorems 2.4.7 and 1.3.4, A'(0) = ET(X), A"(0) = VarT(X) = I1(#). Now check
that (B1)—(B5) hold:

e (B1) holds since this is exponential family.
e (B4)-(B5) are conditions on the prior of choice.
e For (B2), since ¢(0) = > 0T (z;) — nA(f), we have

00) = €(8o) = (0—160)Y T(w:)—n[A(6) — A(6)]
= (60— GO)Z[T(%) — A'(60)] —n {[A(0) — A(6o)] — [(0 — 60) A'(60)]},

~~

—(00) =1(60-60)2A"(6%)

where the 2nd underbrace follows from the T-series expansion:
1
A(B) = A(B0) + (6 — ) A'(60)5(6 — 00)*A"(),

which holds for some 6* between 6 and 6y, with 6* — 65 as n — oo. Thus,
A//(Q*)
—

1
0(0) = £(0o) + (0 — 00)'(6) — 5(9 — 0p)°
Matching this up with the T-series expansion of £(#) in the statement of Condi-
tion (B2) implies that
A//(e*)
n
Therefore we must show that given ¢ > 0, 30 > 0 such that

P (sup{|A"(0%) = 1(6)| : [6" — bo| < 6} = €) — 0,

—nI(6o)+ Ro(6) — %RH(G) _ A(07) — I(6y).
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which is satisfied because A”(0) = I(0) is continuous (Assumption (vi) in The-
orem 6.2.1) and 6* — 0.

Finally (B3). From the proof of (B2) we can write:
1 1 A(0) — A6 ,
() 2100 - 0] = (0 -0 {3 (700 - 0] - |2 =) o] |
0
Now, since A”(0) = I(6) > 0, we have that A(0) is strictly convex, whence assuming
w.l.o.g. that 6 > 0y, implies (from the def. of convexity) that

A(0) = Albo) _
0_—90>A(00).
Since 1 00 1 06
S M) - A ) = —F = = —2 5o,
NGNS

p

=30 S N(0,1(80))
where the distributional convergence of ¢'(6y)/y/n follows from the Iterative Methods
discussion of section 6.3, it therefore follows from (}) that

1

— () — £(6y)] < 0, w.p. 1 as n — oo,

n

whence for given § > 0, let # — 0y > 6, so that

sup {—6(8) ;5(90) } 5 {% > [T(x:) — A'(6y)] — inf —A(eg — ‘;](90) — A’(@O)] }

IN

< —e, w.p. 1 as n — oo.

6.5. Discussion: MLE vs. Shrinkage (Efron & Hastie, 2016)

e Although MLE and its accompanying asymptotic optimality theory is one of the
crowning achievements of classical statistical inference, it has proved to be an
inadequate and dangerous tool in many 21st century applications (bigdata). To
quote Efron & Hastie (2016):

“Unbiasedness can be an unaffordable luxury when there are 100’s or
1000’s of parameters to estimate at the same time.”

e As we saw in Ch. 4, deliberate introduction of bias via shrinkage in order to
improve overall performance (at a possible danger to some individual estimates)
is usually preferable in such (bigdata) cases.

e However, whereas MLE comes equipped with an elegant theory for optimal un-
biased estimation, at present there is no equivalent optimality theory for
shrinkage estimation.



CHAPTER 7

Optimal Testing Theory

Whereas we can view point estimation as a primary level type of inference, tests (or
equivalently, confidence regions), are a second level type of inference; one usually first
desires the former before embarking on a quest for the latter.

In this chapter we will see that the UMVU notion of optimal estimation translates into
UMP and UMPU tests. The former are rather restrictive in that they typically do not
exist for two-sided situations; the notion of unbiasedness helps to remedy this situation,
so that one can derive UMPU two-sided tests for a large class of “nice” problems, including
the s-parameter exponential family.

After battling in this ground of provably-optimal procedures, we end with feasible and
practical guidance. In the failure of identifying an optimal procedure (almost always
the case), one settles for the near-optimal likelihood ratio, Wald, or Score test. This
general approach parallels our point estimation story, where in the failure of identifying
an optimal UMVU, MRE, or minimax estimator, we settled for the near-optimal MLE
(asymptotically UMVU), or the Bayes estimator (admissible).

The UMP procedures (§7.1-7.5) apply only to the one-dimensional parameter 6. In
§7.6 we see how UMPU optimality accommodates the case when there is additionally a
vector of nuisance parameters. Finally, §7.7 deals with the most general case when 6 is
partitioned into two vectors, only one of which is the parameter of interest.

7.1. Uniformly Most Powerful (UMP) Tests

Our basic decision problem is to either accept or reject a given hypothesis about 6 based
on an observation of a r.v. X when the underlying p.m.

P = {Pg, g e Q}
Suppose that Q = Qx U Qpy, where Qx N Qy = 0.

0 € Qy (null)

H
Hypotheses .
K: 0¢€Qg (alternative)

Non-random test
Divide sample space S as: S = Sy U Sy, where Sy NS, = 0.
Accept H if X € 5.

138
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Reject H if X € 5;.
Sy is called the critical region (or the rejection region).
The power of the test is defined (for all ) as:

B(0) = Py(X € S1) = Py(reject H).
The test is said to have significance level « if
B(0) < a, Vo € Q.

In contrast to level, the test is said to have size « if this is the maximum power over the
null space:

sup B(0) = a.

0eQy
(In continuous settings “size” and “level” are synonymous — it’s only in discrete situations
that we make a distinction.)

Ideally we would like

Py(X €S)) = 0, V0 € Qy (probability of Type I error),
Py(X €Sy) = 0, V0 € Qi (probability of Type II error).

However, in general such an ideal test is impossible to construct, and so we search instead
for a Uniformly Most Powerful (UMP) test.

Randomized test

If X =z is observed, we toss a coin with P(Head) = ¢(x) € [0, 1]. If the coin lands Head

we reject H, otherwise we accept H. Note therefore that Head| X ~ Bern(¢(X)), where:
o(z) = Py(Head | X = x),

is called the critical function. If ¢(z) € {0,1}, then we are back in the non-random
case with:

S = {x: ¢(zx) =1}, and So={z: ¢(x) =0}.
The probability of rejection (of H) by the randomized test is thus:
Py(Head) = Ey(Head) = Ey [Eg(Head | X)] = Epop(X) = 5(0).

Problem: Choose ¢(-) to maximize the power

Bs(0) = Epp(X), V0 € Qx,

subject to the level «a test constraint:
6¢(0) S a, Vo € QH

DEFINITION 7.1.1 (UMP test). A test ¢ is UMP of level « if the following two conditions
are satisfied.

(i) By(0) <, VO € Qp. (The test has level a.)
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(ii) Bys(0) > By (8), V8 € Qk, and for every critical function ¢’ such that Sy () <
a, V0 € Qy. (The power of the test is at least as large as that of any other level
« test.)

7.2. The Neyman-Pearson Lemma

A class of distributions is called simple if it contains a single distribution; otherwise it
is said to be composite. The solution ¢ to the problem stated above of maximizing the
power subject to being of level «, is given by the Neyman-Pearson (NP) Lemma if K is
simple.

THEOREM 7.2.1 (Neyman-Pearson Lemma). Suppose Qo and 0y are simple, consisting of
the probabilty measures Py and Py, respectively, with corresponding densities po = dPy/dpu
and p1 = dPy /du, with respect to dominating measure u (e.g., take p = Py + Py ). Then,
defining A, = p{z : p1(x) = kpo(z)}, we have the following results.

Existence & Sufficiency: For 0 < o <1, there exists a test ¢ and a constant k
such that:
(i) Eop = «, (i.e., the test has size a).
(ii) The test is a likelihood ratio test given by

L, pi(z) > kpo(x),
o(x) =10, pi(z) < kpo(x),
v, pi(x) = kpo(z) and A, # 0,

where 0 < v <1 4s an arbitrary constant.
(iii) E1¢ > Eq¢', for every test ¢ satisfying Eod' < a.
Necessity: If ¢* is a UMP level « test, then ¢* satisfies (ii) for some k, a.e. p.
It also satisfies (i) unless there is a test of size less than o with a power of 1.

PROOF. Ezistence & Sufficiency. If o = {0, 1}, choose k = {00, 0}, respectively. If
Py and P, are mutually singular (the intersection of their supports has p-measure zero),
then taking k& = 0 gives ¢(z) = 1 if p;(x) > 0, and we can set ¢(z) = a where py(z) > 0.
Thus the result of the Lemma follows since: (i) Ey¢p = Epa = o (ii) ¢p(z) = 1if py(z) > 0
and ¢(x) = 0 if py(x) < 05 (iii) E1¢ =1 > Ey¢’ for any other ¢/

It remains to consider the case 0 < o < 1 and p(z : po(z)p1(z) > 0) > 0. Let

ko= inf{k’:Po(iz)E? zkz'> ZaZPO(%>k’)}
X

- e (38 <) sr-sn (35 )
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and note that 0 < k < oco. Analogously to A, let A; := P;({z : p1(z) = kpo(x)}) for
j =0,1. Define

1, p1(x) > kpo(z),

o) = OLP( p1(z) < kpo(x),
%fkpo), p1(x) = kpo(z) and Ay # 0,
0, p1(x) = kpo(z) and Ay = 0.

Observe now that (i) follows because, from the above def. of k,

Py p—l(X)>]€ :Po(p—l(§32k>:a, AOZO

%) o
Eyo(X) = -
Py (253 > k) + [<=zkn) 4g — o, 4g £ 0.

Since the test is clearly of the form given by (ii), it remains to show (iii). To this end,
suppose ¢’ is such that Eq¢’ < a. Since 0 < ¢’ < 1, we have

dp—¢ > 0 = ¢>0 = p —kpy>0, [bylstand 3rd branches of ¢|,
dp—¢ < 0 = ¢#1 = p —kpy<0, |by2nd and 3rd branches of ¢|,

Thus (¢ — &) (p1 — kpo) > 0, whence

(7.2.1) 0< /(¢ — @) (p1 — kpo)dp = Erg — Er¢' — k(Eop — Eog') < Er1¢ — Erg,
since Fo¢ = a and Ey¢’ < a implies k(Eop — Fo¢') > 0. Therefore E1¢ > E1¢/.
Necessity. If ¢* is a UMP level « test, then from (7.2.1)

0< / (6 — 6 (p1 — kpo)dp,

with equality holding only if (¢ — ¢*)(p1 — kpo) = 0 p-a.e., since the integrand is non-
negative. This implies ¢* must satisfy (ii) p-a.e. (Note that if ¢* has size smaller than
a, then ¢* can be increased until either the size equals « or the power equals 1.) [

REMARK 7.2.2. UMP tests are determined uniquely up to sets of p-measure 0 by (i) and
(ii), provided A, = 0. If A, = 0, then the UMP test is non-random. If A, > 0, then the
UMP test can be randomized by choosing ¢ to be constant (= 7) on the boundary set
A,. However, any ¢ will do provided the test has size .

COROLLARY 7.2.3. Let B be the power of a UMP level v test for testing Py vs. Py, with
0<a<1. Then, a < 8 unless Py = P;.

PROOF. Take ¢*(z) = . Then F1¢* = o < 3, by def. of UMP. If & = § < 1, then ¢*
is UMP and must satisfy (ii). Therefore po(z) = kp;(z) for every z, i.e., Py = P; (must
have k = 1, otherwise py will not integrate to 1). [

Geometric interpretation
For testing Py vs. P, via the NP Lemma, define N' = («, 3) such that 3 a test ¢ with




142 7. OPTIMAL TESTING THEORY

a = FEyp(X) and = E1¢(X). Then, obviously N C [0, 1] x [0, 1], and it can be shown

) N is convex,

ii) both (0,0) and (1,1) are in N,

i) AV is symmetric about (1/2,1/2), so that («,5) e N = (1—a,1—05) €N,
) N is a closed set.

(1
(iii

(iv

Plotting a vs. 3, we see that N describes a convex set extending from (0,0) to (1, 1),
centered at (1/2,1/2). For a given level oy, the level g tests are represented by the
portion of N to the left of the vertical line o« = «p (shaded region). The UMP test
(tests) is (are) the single point (line) with largest § value in the shaded region at a = ay.

Geometric proof of Corollary

Clearly 8 > « since ¢(x) = « for every z is an « level test with power . If Jayg for
which the level oy UMP test has power ag, then by convexity and symmetry, N is the
line segment joining (0,0) and (1,1). Therefore [ ¢dPy = [ ¢dP; for every test function
¢, which implies Py = P;.

The NP Lemma can usually be invoked to find a general one-sided UMP test for composite
hypotheses, as the next (classical) example shows.

EXAMPLE 7.2.4 (UMP one-sided test for normal mean). Consider the single obs X ~
N(u, %), where o2 is known. To find the UMP test of H : p =0 vs. K : = pg > 0,
note that A, = 0, so that the UMP is non-random, and is given by the NP Lemma as

¢( ) 1, 22_?% >k 1, exp ;402290 2/222 >k 1, =z>F
€Tr) = 0 ﬁ = _= !
0, ii—gx)<k 0, exp %—2‘% <k 0, =<Kk
where the last equality follows by the equivalence of events
{pQ(x) > k} — {z >k}
Po(x)
The cutoff &’ is found by requiring the test to have size a:
K —
a:PO(X>k:'):P<Z> ), = K =02_a,
o

where Z ~ N(0,1) and z;_, is its 1 — « quantile, i.e., ®(z;_,) = 1 — a. Noting that the
test did not require specific knowledge of 1o, only that us > 0, we can in fact conclude
that the level a UMP test for H : p = 0 vs. Ky : u > 0, rejects when = > oz1_,. Its
power function is

Po(p) = Py (X > 0z21_0) =1 —P(21_0 — p/0).

Similarly, the test that rejects for © < oz, is UMP level a for H : p =0 vs. Ky : p < 0.
Its power function is

Bi(p) = P (X < 02y) = ©(20 — pt/0).
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REMARK 7.2.5 (Nonexistence of two-sided UMP). UMP tests typically do not exist for
two-sided alternatives. E.g., consider testing H : u = 0vs. K : u # 0, a pair of hypotheses
with a simple null, in the previous example. Sketching the power function /3 (u) over all
i € R, note that

lm fi() =1, and Lm0 =0,
putoo

pd—o0
and is monotone decreasing betwen these two endpoints. Similarly, S2(x) is monotone
increasing between the endpoints:

lim Ba(p) =0, and lim By () = 1.

pl—o0 phoo
By the necessity part of the NP Lemma, a UMP test for K would therefore have to
coincide with 51 (u) for p < 0 and SB2(p) for g > 0, but neither of these two is UMP over
all of R. (The power function of the obvious test that rejects when either 2 < OZq)2 OT
T > 021_q/2 is below each of these over their respective optimal regions.) Thus, no UMP
test exists here.

7.3. P-Values

See §3.3 of TSH.

7.4. Monotone Likelihood Ratio

We saw in Example 7.2.4 that we can sometimes extend the NP simple hypotheses results
to a composite one, which hold for all # € K. This will now be seen to be an instance of a
general result that holds whenever the family of measures { Py} has a monotone likelihood
ratio (MLR).

DEFINITION 7.4.1 (MLR). The family P = {py := dFy/dp : 0 € Q C R} has MLR in
T(-) (usually a sufficient statistic) if Vf; < 6 there exists a non-decreasing function hyg, g,
of T'(-) such that

Do, (T
szEx; = hg, 0,(T(2)), on the set A, (61,02) = {x : ps,(x)ps, (x) > 0}.
1
(Families with non-increasing MLR may be treated by symmetry by reparametrizing,
¢ := —0, which has the effect of reversing the inequalities in the next theorem; see

Remark 7.4.5.)

EXAMPLE 7.4.2 (Uniform). X = (X3,...,X,,), where X;,..., X,, ~iid U(0,6). Then,
1 1
po(@) = oo L0) (@) 00 (@w) = o Lo (@) 00 (Twm)
whence we see that T'(x) = x(,) is sufficient. Hence for 6; < 0,
p(@) _ [(%) 0<am <o,
pgl(iL‘) +00, 0, < T(n) < 0,.
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Since this ratio is constant over Ay (61,602) = {x : 0 <z, < 01}, {po} has MLR in z(,).
EXAMPLE 7.4.3 (One-parameter exponential family).

po(x) = exp{0T () — A(0) }h(x).
For 6; < 65, we have that

izzgg =exp{ (02 — )T (x) — [A(61) — A(67)]},

which is increasing in 7'(x), and thus the family has MLR in T'(x).

The most important result under MLR is the following theorem, which states that there
is a one-sided UMP composite hypotheses test.

THEOREM 7.4.4 (One-sided UMP test under MLR). Suppose {ps} has MLR in T. Then
we have the following results.

(i) For testing H : 0 < 0y vs. K : 6 > 0y, there exists a UMP level « test, given by

1, T(x)>c,
px) =97 T(x)=c
0, T(x)<c,

where —o0o < ¢ < oo and 0 < v <1 are determined by the level o constraint:
Ep0(X) = a.
(ii) The power function B(0) = Eep(X) is strictly increasing on the set
{6:0<pB(0) <1}.

(iii) For any 0 < 6y, the test ¢ minimizes the Type I error, i.e., it minimizes B(0)
among all tests ¢’ satisfying

Egogb/(X) = Q. (i.e., E9¢ < qub/, Vo < 00)

PrOOF. We will consider only the case 0 < o < 1.

(i) Letting ¢ = inf{c : Py, (T > /) < a}, it is clear that
Py (T>c)<a< P (T>c).
Let

Py, (T=c) >

L o Loy (T20) if p (T =¢) > 0,
0, otherwise.

Using similar arguments to the proof of the NP Lemma, we have, for this (c,~)
pair, that Ey ¢ = o. Now consider H : 0 = 6y vs. K : 0 = 60,, where 6, > 6,. We
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know from the NP Lemma that a UMP size « test is of the form

1, pﬁl(m) > kp@o(w)’
¢*(w) =3N7 Do (m) = /{?pg()(.’L')
0, p91($) < kp90<w),

where k was defined in the proof. But ¢ is UMP for H : § = 0y vs. K : 0 = 61,
since Fy,¢(x) = a and,

D)y (T(@) = hale) = T(@) >
p90(w)
T
Po(@) ho oo (T(2)) = he, p,(c) <= T(x) <c,
pQO(w)
which follows from the fact that hg, g,(-) is monotone increasing in 7'(x) = c.
Thus,
L (@)
1’ zZ()E‘”) = h91’92 (C),
925(33) =37 izl (@) h91,92 (C>’
Po, ()
0, Fat@ < hou:(0);

whence ¢ = ¢* and hy, ,(c) = k. But, since ¢ depends only on 6y, ¢ is indepen-
dent of 6; and is therefore UMP for H : 0 = 0y vs. K : 6 > 0,. We next extend
this to K : 0 < #,. By the NP Lemma, note that ¢ is UMP for H : § = 6,
vs. K : 0 = 0y, for any 6, > 0, al level o/ = Ey, ¢ = §(0;). By Corollary 7.2.3,
we then have that

(7.4.1) B(62) > o' = p(6), provided 5(6;) < 1,

whence 5(0) < (6y) = «, for every 0 < . Finally, since ¢ maximizes 5(6) for
each 6 > 6, subject to Ey,¢ < «, it also does so subject to the more stringent
condition: Ey¢ < « for every 6 < 6y. Hence ¢ is UMP level a for H : 0 < 6,
vs. K : 0 > 0,.

(i) This was shown in (7.4.1) above.

(iii) For ' < 6y, 1 — ¢ is a UMP test of H : 0 = 0y vs. K : 0 = #'. Consequently, if
Ey,¢' = a, then Ey,(1 —¢') =1 —a = Ey,(1 — ¢), which implies, since 1 — ¢ is
UMP, that Eg/(l - qb) Z Eg/(l - ¢/), whence Eglqb S E9/¢/.

OJ

REMARK 7.4.5. We can make the following remarks concerning this theorem.

e To test H : 0 > 0y vs. K : 6 < 0, just reverse the inequalitites in the definition
of ¢(x) in (i).

e Lor testing H : 0 < 0y vs. K : 0 > 6, as in the theorem, analogous results hold
if the likelihood ratio py,/pg, in the definition of MLR is instead non-increasing;
again we just reverse the inequalitites in the definition of ¢(a). Thus to have a
one-sided UMP test, we just need the likelihood ratio to be monotone.
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Under a one-parameter exponential family, we have the following consequence of this
theorem.

COROLLARY 7.4.6. Let 6 € R and suppose X has density (w.r.t. a dominating measure)
that is a one-parameter exponential family of the form:

po(x) = exp{Q(O)T () — B(0)}h(z),
where Q(0) is strictly monotone. Then, the UMP test of H : 0 < 0y vs. K : 6 > 0y is
given by one of the following two cases.

Case () 1 (increasing):

1, T(x)>c,
¢(x) =97 T(x)=c
0, T(z)<c
Case () | (decreasing):
(1, T(z) <c,
¢(x) =97 T(x)=c
0, T(x)>c

In each case, c and vy are determined by the level o constraint:
E00¢(X) = .
For a UMP test of H : 0 > 0y vs. K : 0 < 0y, just reverse all the above inequalitites.

EXAMPLE 7.4.7. X1,..., X, ~iid Gamma(0, \), where 6 > 0 and A > 0 are respectively,
the shape and rate (inverse of scale) parameters, with density

F(:6,) = %

If X is known, the objective is to find the UMP test of H : § > 1 vs. K : § < 1. The
density of the sample (likelihood) is seen to be a one-parameter exponential family:

L(0) = exp {0t(x) — n[logT'(0) — Olog AJ} h(z),  t(xz)=> loguz:
Since () = 0 is increasing, the corollary identifies the UMP level a test as:

5(a) = {1, tz) < c,

/e (2 > 0), EX)=—.

0, t(x)>c,
where ¢ solves
a = Egd(X) = Py (T < ¢) = Py (— 3 Mog(AX,) > c’) .
Now, when 0 = 1, f(z;0 = 1) = Ae **I(z > 0) ~ Exp()\), and it can be shown that
Y = —Alog(AX) ~ Gumbel(u = 0,0 = )),

location  scale
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so that the appropriate quantile ¢’ can be found from the cdf of }_ Y; (which seems to be
non-standard, but at least the mgf can be computed and quantiles obtained by inverting
it via a saddlepoint approximation), or ¢ can be found by Monte Carlo simulation directly
from T.

A Decision-Theoretic Formulation
We can place the hypothesis testing problem on a decision-theoretic formulation, akin to
the point estimation problem. For ¢ which tests

H:0<60y vs. K:0>80,,

there are two possible decisions: dy = {accept H}, or d; = {reject H}. We can therefore
define corresponding loss functions:

Lo(0) :== Lo(0,dy) = loss incurred when 6 is the truth and we accept H,
L1(0) := L1(0,dy) = loss incurred when 6 is the truth and we reject H,

so that the (total) loss is
L(0, ) = Lo(0)(1 = ¢) + L1(0)¢.
We can now define the risk in the usual way as expected loss:
R(0,¢) = EL(0,¢) = Lo(0)(1 — Epp) + L1(0) Ego.
DEFINITION 7.4.8 (Inadmissible test). A test ¢ is inadmissible if 3¢’ such that

R(6,¢") < R(0,9), Vo
R(6,¢") < R(6,0), for some 6.

That is, ¢ is inadmissible if 3¢’ which dominates ¢. A test ¢ is admissible if its not
inadmissible.

DEFINITION 7.4.9 (Complete classes). A class C of tests is complete it Vo ¢ C, 3¢’ € C
such that ¢ is dominated by ¢'.

A complete class is minimal if it does not contain a proper complete subclass. (If a
minimal complete class exists, it consists of precisely the admissible tests.)

A class C is essentially complete if Vo & C, A¢' € C which is “at least as good” as ¢, i.e.,
R(0,¢") < R(0,¢), V0. Such a class is minimal if it does not contain a proper essentially
complete subclass.

The point is that if there is a (minimal) essentially complete class, then one need not
bother with considering tests outside of this class.
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THEOREM 7.4.10. Under the setting and assumptions of Theorem 7.4.4, let C be the class
consisting of all tests of the form given by (i) of that theorem. If

L1(9) — Lo(e) > 0, for 0 < 0y,

L1(9) — Lo(e) < 0, for 8 > 0y,

then we have the following results.

(i) C is essentially complete.
(ii) If additionally the set {x : po(x) > 0} is independent of 0, C is minimal essen-
tially complete.

PROOF. For any given test ¢/, let « = Ej,¢'. Choose ¢ as in Theorem 7.4.4, i.e.,
Ep, ¢ = o with

1, T(x)>c
¢x) =497 T(@)=c.
0 T(x)<c

Then, Eyp < Ey¢’, V0 < 0y (has smaller Type I error), and Eyp > Ep¢, V0 > 6y (is
UMP). Hence

EL(6) := R(0, $)

Lq(0)P(reject H) + Lo(0)P(accept H)
L1(0)Egd + Lo(0)(1 — Eyg)
Lo(0) + Eg¢ (L1(0) — Lo(9))

< Lo(0) + Eg¢' (L1(0) — Lo(0))

= R(0,¢),
where the < part follows by the assumptions on L; and Ly in the statement of the
theorem. O

7.5. Confidence Bounds

UMP one-sided tests can be used to derive upper and lower confidence bounds (CBs).
As we will see, inverting a UMP test leads to UMA confidence CBs (defined next). Since

lower and upper bounds are analogous, it suffices to focus our attention, say, on lower
bounds, 6.

DEFINITION 7.5.1 (UMA lower CB). We define the following based on sample data X.

(i) 8(X) is a (1 — «) lower confidence bound for 0 if:
PyO(X)<0)>1—a, V6.

(The idea is that @ falls below 6 with a specified high probability of at least
1—a)
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(ii) The confidence coefficient or confidence level for §(X) is defined to be
inf P)(8(X) < 6).

(This usually turns out to be 1 — a.)
(iii) @ is a uniformly most accurate (UMA) lower CB for § with confidence level
(1 — «), if, in addition to (i), we have

R0(X) < 8) < B(0"(X) < 0), V0 <0,

and for every other lower CB 6" (X) satisfying (i). (The idea is that we want to
underestimate 6 by as little as possible.)

Our aim is to find a lower CB for § which falls below 6 with high probability (> 1 — «),
but not too far below. Excessive underestimation can be assessed via a loss function.
Suppose the following conditions hold

L(0,6) =0, if 6 > 0,
(7.5.1) L(0,0) >0, VO0<0,

L(97Q) EL(9>Q/)7 lfQS_/ S‘g
Problem: Minimize the risk EpL(6,0), subject to
(7.5.2) P0(X)<0)>1-q.

Solution: An UMA lower CB minimizes the risk subject to (7.5.2).(See Problem 3.44 in
TSIL)

Thus the determination of an UMA lower CB also solves the more general problem for-
mulated in terms of any loss function satisfying (7.5.1). Finding UMA CBs is faciltated
by introducing the following concept.

DEFINITION 7.5.2 (Confidence Sets). A family of subsets S(z) of 2, where z € X, is said
to be a family of confidence sets at confidence level (1 — «), if

PyfeS(X)>1—a, V0e.

Thus, the random set S(X) covers the true parameter with probability at least (1 — «).

EXAMPLE 7.5.3. If 0(X) is defined as in (i) of Definition 7.5.1, then the sets S(x) =
[0(x),00) constitute a family of (1 — a)-level confidence sets for 6.

The next theorem shows that inverting a UMP test leads to an UMA confidence set.

THEOREM 7.5.4. For all 0y € Q, let A(y) be the acceptance region of a (non-random)
level o test of H(0y) : 0 = 0y, and let

S(x)={0: = € A0) and 6§ € Q}.

Then, we have the following results.
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(i) Forx € X, S(x) is a family of level (1 — &) confidence sets for 6.
(ii) If, for all 6y, A(6y) is the acceptance region of a level o« UMP test of H(0y)
vs. the alternative K (0y), then the corresponding confidence set S(x), minimizes

Py(bp € S(X)), Vo € K(b)),

among all (1 — «) level families of confidence sets for 6.

PROOF. (i) By def., 8 € S(z) if and only if x € A(f), and therefore
P@(@ c S(X)) = PQ(X < A(@)) >1—a.

(ii) If S*(x) is any other family of level (1 — «) confidence sets, then A*(0) = {x :
0 € S*(x)} defines an « level test of H(0y) vs. K(6y), since

P@O(X S A*(eo)) = P90(90 S S*(X>> >1—a.
However, A(6p) is UMP, and hence
P@(X S A*(Qo)) = Pg(eo c S*<X)) > P@(X S A(@o)) = Pg(@o S S(X))

OJ

COROLLARY 7.5.5. Suppose {pyg(x), 0 € Q} has MLR in T(x), and that the cdf Fy(t) of
T is marginally continuous in each t and 0 (when the other is fized). Then, we have the
following results.

(i) For each level (1 — ), there exists a UMA lower confidence bound 6 for 0.
(ii) If Fy(T(x)) = 1 — « has a solution 0 = 6 for each x, then the UMA (lower)
bound is unique, and 6 = 6.

PROOF. (i) For each 6, there exists a c¢(6y) such that
(7.5.3) Py, (T > c(by)) = .
Moreover, from Theom 7.4.4,
1, ifT(z) > c(6
¢lz) = {0, if TEx; < CEQS;
is a UMP level « test for H(6y) vs. K : 0 > 0, with
B(0) = Egpp > «, Vo > 0,

and consequently Pyp(T > ¢(6y)) > « for all 8 > 6. By def., (7.5.3) holds
also for every 6 > 6, whence c¢(0) > c(6y), i.e., c(-) is strictly increasing (and
continuous by the continuity of Fy(t) in ). Now, set A(0) = {z: T'(z) < ¢(9)},
S(x) ={0: x € A(#)}, and define O(x) = inf{0 : T(z) < ¢(A)}. Then,

0>0(xr) <= c0)>T(x) <= zecA@).

Consequently, it follows from (7.5.3) that for every 6, Py(0(X) < 0) = Bp(T'(X) <
c(0)) = 1—a. Since by Theom 7.5.4 [0(x), 00) minimizes Pp(6(X) < &) for every
0" < 0, it follows that @ is a UMA lower bound for 6.
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(ii) Suppose 0 < Fy,(t) < 1. Then, setting

o L Tt

o, fT<t
implies Fy,(1 — ¢) = Py, (T <t) =1 — «, which holds also for every 6 > 6, (by
the corollary to the Neyman-Pearson Lemma), and this means that Fy(t) is a
strictly decreasing function of 6 at each 6 such that 0 < Fy(¢) < 1. Consequently,

Fy(t) = 1 — a can have at most one solution: § = §. Then F;(t) = 1 — a, and
(by def.) ¢(f) =t, so that
t<cll) <= cl)<cl) <= 0<o.
(Follows by part (i) where it was shown ¢(-) is continuous and strictly increasing.)
Setting t = T'(x) gives
0>0(z) < T(x)<cl) <= 60>0),

A

whence it follows that 6 = 6.
O

EXAMPLE 7.5.6 (Exponential waiting times). If Xi,..., X,, ~iid E(\), we wish to derive
UMA lower and upper CBs for A\. Since we have a one-parameter exponential family,
this is most easily done by invoking first Corollary 7.4.6 to derive a corresponding UMP
one-sided test, followed by Corollary 7.5.5 which guarantees an UMA lower/upper CB
upon inversion of the (UMP) test. From the pdf of the sample

pa(x) = Nlexp {—\T(x }HI (z; > 0), T(m):inwF(n,)\),

we note that QQ(\) = —\ is monotone decreasing in A, and the cdf of T is continuous in
both ¢t and A. (For ease of quantile calculation, we also note that 2A\T" ~ x?(2n).) Thus
the UMP test of H : A\ > )y accepts for T' < ¢, where

_ Xia(20)

1 —a=P(T <c)=P(*2n) <2X\c), = )
0

Thus,

Xl o 2”) X%—a(Zn)
<L = 7
xeAN) — E o — N ST

so that x?__(2n)/(2t) is a (1 — a) UMA upper CB for \.
Similarly, x2(2n)/(2t) is a (1 — a) UMA lower CB for ), obtained by inverting the UMP
test of H : A < \g, which accepts for T" > c.

UMA Confidence Intervals (Cls)
Lower and upper CBs can be used to construct the more common CI, defined as follows.

DEFINITION 7.5.7 (Confidence Interval). Suppose all of the following hold:
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e 0 is a lower CB with confidence level 1 — ay,
e 0 is a upper CB with confidence level 1 — ay,
e 0 < 6 for every sample point x (occurs if, e.g., a; + s < 1).

Then, the interval (6, 0) is called a confidence interval for 6 with level (1 — oy — ay), i.e.,

Pg(QSQS@):l—al—OQ’ Vo € Q.

If § and O are UMA, then they minimize the risks under their respective alternatives,
E¢L1(0,60) and FEyLy(0,0), at their respective levels. This is so for any L; that is non-
increasing in @ for § < 6 and 0 for § > 6, and for any L, that is nondecreasing in @ for
> 6and 0 for 6 <6. Letting

L(97Q7 5) = Ll(eag) + LQ(H,Q),

the CI (¢, ) thus minimizes the risk under the alternative, EyL(6; 6, 6), subject to having
confidence level (1 — oy — aw):

Py(0 >0)<a;, and Py(0<0) < as.

Examples of loss functions satisfying these propertis are as follows.

Natural measure:

-0, ifg<6<a,
L(6;0,0)=<0—6, if6 <9,

0—6, if6>80.
Coverage: L(6;0,0) =0 — 0. - B
Weighted distance from ends: L(0;0,0) = a(f — 0)* + b(0 — 0)>.

EXAMPLE 7.5.8 (Exponential waiting times (continued)). From the lower and upper
(1 — a) CBs we obtained in Example 7.5.6, it is easy to see that the interval

(5 5).

is a CI with confidence level (1 — 2a).

7.6. Uniformly Most Powerful Unbiased (UMPU) Tests

In Remark 7.2.5 the real reason there was no UMP two-sided test for the normal mean, is
that the power function of the one-sided UMP tests dips below the size of the test in the
null space. If this region is to be in the alternative space K for the two-sided test, then
we should introduce a constraint that the power function over K must not dip below the
size of the test. This is the concept of an unbiased test.
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DEFINITION 7.6.1 (Unbiased test). A level a test ¢ of H : 6 € Qp vs. K : 0 € Qg is
unbiased if

(761) E9¢ >, Vo € Q.

(And since ¢ is level o we also have Fyp < o, V0 € Qp.)

Clearly any UMP level « test is unbiased, since ¢'(z) = a Vz is a level « test, and so a
UMP test ¢ (which has a power function at least as large), must satisfy (7.6.1).

Now, let w denote the set of parameter points that are on the boundary of H and K, i.e.,
the set of points ¢ that are points or limit points of both Qg and Q. If B4(0) = Ep¢ is
a continuous function of 6, then for § € w, we must have 5,(¢) = a. The reason for this
is that if 6 is a limit point of values 6,, € Qg and 60, € Qg, then

Bs(0) = lim S,(0,) < a, and Bs(0) = lim By(0),) > «a.
n—oo n—oo
This embodies the concept of an a-similar test.

DEFINITION 7.6.2 (a-similar test). A test ¢ is a-similar on the parameter points w that
are on the boundary of H and K, if

(7.6.2) Bs(8) = «, Vo € w.

The importance behind this definition, is that it allows us to establish unbiasedness
through the more tractable concept of a-similarity, as the next result shows.

LEMMA 7.6.3 (UMPU test). Suppose Qu N Qx C R* and B4(0) is continuous in 0 for
every test ¢. If ¢' is UMP «a-similar of level «, then it is UMP unbiased (UMPU) of
level a.

PROOF. Since ¢ = «v is a-similar, Fy¢' > Fop = «, for every 6 € Q, and hence ¢’ is
unbiased. Now let ¢ be any unbiased level-a test. Since:

Egp > a VO € Qi (unbiased),
and
Eyp <a V0 eQy (level a),
we must have
E9¢:Oé Vo € (8QHﬂaQK)

(since for 6 on the boundary 09y, there exists a sequence {6, } € Qg such that 6,, — 0;
likewise there exists a sequence {0} € Qf such that 0/, — 6; and Ey¢ is continuous in
). Hence ¢ is a-similar, and consequently

Ey¢' > Egp, VO € Q,
that is, ¢’ is UMPU of level a. O
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One-parameter Exponential Families and Two-sided Tests
Suppose X = (Xj,...,X,) has a density belonging to the one-parameter exponential
family

po(x) = exp{0T (x) — A(0) }h(x).

Then, letting 6, > 61, we have the following results concerning the existence of UMP
tests.

(i) A UMP test exists for H : 0 < 0y vs. K : 6 > 0y, and the reverse situation, by
Corollary 7.4.6.
(ii)) A UMP test exists for H : 0 < 0y or 0 > 05 vs. K : 0 € (64,05), by TSH Theorem
3.7.1.
(iii) A UMP test does NOT exist for H : 6; < 6 < 0y vs. K : 6 < 6 or 0 > 0y, by
TSH Problem 3.54. In this case, consider the test

1, T(x)<c orT(x)>cy,
o) =<7, T(x)=c¢, i=1,2,
0, c<T(x)<ecy,
where c;,co € R and 0 <~ < 1 are determined by the level o constraint:

Ey,¢(X) = Ep,¢(X) = a.

From the results on exponential families in Ch. 1 (Theorem 1.3.13), we know
that 5,(0) = Ey¢ is continuous in 6 on int(N), w = {61,602}, and Ey ¢(X) =
Egp,¢(X) = a, whence it follows that ¢ is a-similar. Now, by TSH Theorem
3.7.1, it follows that 1 — ¢ is UMP level (1 — «) for H : 0 < 6, or 6 > 0,
vs. K':60; <60 <05, and also that V¢’ such that Fy ¢’ = Ep,¢' =1 — a,

E9(1 — ¢) < Eg(l — ¢/), VO < 0, or 6 > 92,
whence
Eo¢' < Eyo, V & [01,04].

Hence, the test ¢(x) defined above is UMPU level o by Lemma 7.6.3.
(iv) A UMP test does NOT exist for H : 0 = 0y vs. K : 0 # 6y, by TSH Problem
3.54. In this case, consider the test

I, T(x)<c orT(x)>cy,
¢(IB) = Yis T(az) = Gy, 7= 1,2,
0, ¢ <T(x)<cy,

where c1,co € R and 0 < < 1 are determined by the level o constraint
E@O¢(X) = Q, and E90¢(X)T(X) = OéEgOT(X).
Then, ¢(x) is UMPU by the argument on pp. 111-113 of TSH.
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EXAMPLE 7.6.4 (UMPU two-sided test for normal mean). Let X;,..., X, ~iid N(0, 0
where o2 is known. By the result from case (iv) above, the UMPU test of H : 0 =
vs. K : 0 # 0y, is given by

1, X,<corX,>c

cb(X):{ ’ . = ¢(Z)={

?),
0o

1, Z<zorZ >z

0, otherwise, 0, otherwise,

where Z = (X,, — 6y)/(0//n) ~ N(0,1) with density f(z) under H, and zj, 2, satisfy
22
Eo(¢) = P(Z < 21)+ P(Z > 2) =« = / f(2)dz=1-q,

and

En(67) = aEg(2) < Eyl(l— )2 = (1—a)Ey(Z) += /

The first condition states that the interval [z1, 23] must enclose an area of (1 — «), while
the second stipulates that z; < 0, zo > 0, with |21| = 22 (the integral of an odd function
can only be zero if the limits are the same distance apart and on opposite sides of zero).
The only values that satisfy these are 2y = —z1_q/2 and 2o = z;_4/2. Thus the UMPU
level a test rejects for

— g — g
X, < 00 — or X, > 0(] + Zl—a/2—F—

21—04/2% N
EXAMPLE 7.6.5 (UMPU two-sided test for normal std. deviation). Let Xy,..., X, ~
iid N(0,0?). The density of the sample is

pU(X):\/%eXp{HT(X)}, I=—5 5 T=3 X,

so that from case (iv) above, the UMPU test of H : 0 = 09 vs. K : 0 # 0y, which is
equivalent to H : 0 = 6y vs. K : 6 # 6, accepts for

T
aq <T < S t1§—2§t2
o
where T/o2 ~ x?(n) with density f,(t) oc t"/>71e~*/2 under H, and t,, 1, satisfy
t2
(a) Eo(l—¢) = / fut)dt =1—a,
t1
and
Enl(l=0)T] = (1= )E, (T) <= / L)t = (1 — a)n,
This 2nd condition is equivalent to (TSH Problem 4.5)
(b) 15711/26_“/2 = tg/Qe_tQ/Q.

The system (a) and (b) of two equations in two unknowns can now be solved numerically
for t1,t,. Alternatively, the equal-tails test with ¢; = Xi/Q(n) and ty = X%_Q/Q(n) provides
(by the CLT since T is an empirical sum) a good approximation for large n.
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UMPU Tests for Multi-parameter Exponential Families

Here we generalize the above to the situation when only one parameter (§ € R) is of
interest in an exponential family, while the remaining parameters (¢ € R*) comprise a
vector of nuisance parameters. We suppose X = (X,...,X,,) has a density of the form

APy
dp
where (0,&) € Q, where the parameter space €) is convex and contains an open set of

R*¥*1. (The density is in canonical form, but we combine the A(-) and h(-) functions into
C'(-) for a compact representation.)

() = C(0,8) exp{U(x) + - T(x)},

We will assume that ) contains points for which 6 < 6, 60,,60,, and points for which
0 > 6y, 0,,05. We are interested in tests of the following types:

(1)H1:9§90VS.K1:9>90.
(2)H2:9§9101“9292VS.K2:91<9<92.
(3)H3:91§9§92VS.K3:9<910r9>92.
(4)H429:90VS.K419§£00.

Since the sufficient statistics U and T contain all the information in the sample regarding
(0,&), we can restrict attention to tests based on them.
Now, by Theorem 1.3.11, note that (U, T') have the joint density

dpPy"

0,§ _ Ou+€-t
B 1,) = (0, )",

with respect to the measure
v(B) =p{z : (U(),T(x)) € B}, VBeBER"™).

The next result shows that the conditional distributions of U given T = t constitute a
one-parameter exponential family.

LEMMA 7.6.6 (Distribution of U|T"). For any fixed (0o, &) € €2, define

UlT=t —Oou 1 —6o)u
W) = dFEM W, ) =), = [ )
Then, the distribution of U|T =t constitutes a one-parameter exponential family of the
form

dP " (u) = Cy(6)e” duy(w),

which therefore does not depend on the nuisance parameter &.

PrOOF. Note that since we can write

0(67 S) —bo)u —s0)*
B )= Gyt ()
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we obtain the density of Ut as the joint divided by the marginal of T', using the measures
defined above:
UT Yu 3 pUT —60)u
dPy " (u) = APy, (wt) O dPy e (ut) ey (u)
[dP)E (du,t) [ el@=00udP) T (du,t) [ elf=0dyy(du)

= Cy)e G“dyt( ).

We now tackle each of the four cases described above.

Case (1): For every o € (0,1), there exist constants ¢(t) and y(¢) such that the

test
1, u > c(t),
¢1(u7 t) - 7(t>’ U = C(t)>
0, u < c(t),
satisfies
(%) Eg[¢1 | T] = o

Moreover, ¢, is UMP level o conditional on T = ¢, i.e., for every ¢ satisfying
(%), we have

(7.6.3) Eglp1 | T =t] > Ep[o | T = t|, Vo > 0,
since the distribution of U|T = t is a one-parameter exponential family.

NOTE 7.6.7. The following points should be noted.
e We use the notation Ey[¢|T| instead of Ey¢[¢|T], since the distribution of
U|T is independent of £ (Lemma 7.6.6.)
e Tests satisfying (x) are said to have Neyman structure (see TSH §4.3).
e Reverse the inequalities in the definition of ¢, if one wishes to test instead
H110290VS.K119<00.

Case (2): Similarly, the test

1a Cl(t) S (4 S 02<t>>
Pa(u, t) = ¢ 7(t), u=c(t), i=1,2,
0, u < c1(t) or u > eo(t),

satisfying
Eei[¢2 |T] =, 1=1,2,
is UMP level o conditional on T = t¢.
Case (3): Similarly, the test
1, u < c1(t) or u > co(t),
d3(u,t) = < (L), u=c(t), i=1,2,
0, c1(t) < u < ea(t),
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satisfying
Eei[¢3 |T] = Q, i:1727
is UMP level « conditional on T = ¢.
Case (4): Similarly, the test

1, u < c1(t) or u > co(t),
¢4<U,t) = Vz(t)v u:C’i(t)a L= 172a
07 Cl<t) S (] S 62(t>7

satisfying
EG() [¢4 | T] = G, and E90 [¢4U | T] = aE@o [U | T]>
is UMP level « conditional on T' = t¢.
The conditional UMP property of these tests is of limited usefulness; in practice we

almost never want the value of T" to be fixed/given. What one wishes for instead is some
sort of unconditional optimality, and this is established by the following theorem.

THEOREM 7.6.8 (Unconditional UMPU). The tests ¢1, ..., ¢4 defined for Cases (1)-(4)
above are unconditionally UMPU level «.

PROOF. We prove only Case (1); the remainder being similar. Suppose ¢ is an
unbiased level « test. Then, because it’s a-similar, Ey, ¢¢(U,T) = « for every £&. Now
let g(T') = Ey,(¢|T') — «, and note that

(764) E@msg(T) = E907£¢<U, T) —a=a—a=0.

For 6 = 6y the dist. of T belongs to the k-parameter exp. family with parameter set
Qo = {€: (6p,€) € Q}. By our assumptions on 2, )y contains an open subset of R, and
therefore T is complete for {Py, ¢ : & € Qo}. Now, because of (7.6.4), we deduce (from
the def. of completeness) that ¢g(T') = 0 a.s., whence it follows immediately that

(7.6.5) Eyp(o|T) = a.s.

(This shows that an unconditional unbiased level « test is also level a conditionally.)
Finally, from (7.6.3) it follows that for 6 > 6,

(7.6.6) Eye(01) = Epg [Eg(01 | T)] = Epg [Eo(¢ | T)] = Epe(9),
whence ¢, is UMPU level a (UMPU by (7.6.6), and level a by (7.6.5)). O

EXAMPLE 7.6.9 (Comparison of Poisson means). For X ~ Poi(A) and Y ~ Poi(u), with
X and Y independent, we see that the joint density is the 2-parameter exp. family:

—(Atp)

e
fX,Y(xJ y) = exp Yy IOg(ILL//\) + ([L’ + y) lOg()\) 12/ = €9u+£t 0(07 5)7

with (X, &) € Q = R? clearly convex. Now note that tests about 6 = log(u/\) = u/\ =
e?, correspond to comparing p and \. E.g., suppose we wish to test H : 0 < 0 (& pu < \)
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vs. K : 0 >0 (< p > A). Then, from Case (1), the conditional UMP level « test is
given by

1, u > c(t),
¢1(uv t) = ’Y(t)a U= C(t)’
0, u < c(t),

with ¢(t) and ~(t) satisfying Ep—o[¢1|T] = «. To compute the power function we need
the distribution of U|t, which will be seen to be Bin(n =t,p = €’/(1 +¢’)). Noting that
A =ef and pu = et the joint of (U, T) is

pure€xp{—e*(1 + )}

UT
dFpe (u,t) = ¢ ul(t —u)!

where the fact that the support is the lattice region on the upper portion of the first
quadrant of the w vs. t plane separated by the line u = ¢, stems form the fact that
y=u>0and r =t —u > 0. Summing over u yields the marginal of 7"

AP (t) = exp{e® — e*(1+ €")H{o,..00p(1) )

tl/(1+e?)?

where in the summation we used the following identity for Z ~ Bin(n, p):

n

Zz!(nl—zﬂ (ﬁp)Z:m-

2=0

The density of Ul|t now follows straightforwardly by dividing the joint of (U,T") by the
marginal of 7. To find the cuttoff points ¢(¢) € R and 0 < (t) < 1, we solve:

a = Eg_o[p1|t] = P(Zy > ¢(t)) + v(t)P(Z: = c(t)), Z; ~Bin(n =t,p =1/2).

This can be solved exactly via tables, or approximated via the CLT (normal approxima-
tion to the Binomial).

By Theorem 7.6.8, the (unconditional) UMPU level « test is identical. So what is the
difference? In both situations we observe the value of ¢ = = + y, so t is known. The
distinction is that if we don’t fix anything, then ¢, is only UMPU, whereas if we want
the optimal test among all those with the same value of t (x and y vary but their sum is
fixed), then we obtain the stronger result that ¢; is in fact UMP.

EXAMPLE 7.6.10 (Testing a normal std. deviation). For X7,..., X, ~iid N(y,c?), TSH
§5.2 investigates the following 4 tests:

Hy:0<oggvs. Ki:0 > 0y.
Hy:0 >0 vs. Ky:0 < oy.
H3 < po vs. Kz > pip.
Hy:p > po vs. Ky:op < pp.
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The difficulty of these situations is that both parameters are unknown. TSH §3.9 shows
that H; is the only one for which there exists a UMP test (which rejects for large > (z; —
7)?). Here we will investigate optimal tests for Hy. Treating i as a nuisance parameter,
we have the 2-parameter exp. family:

foulx) = exp —%Zx + = le C(0,¢).

Thus, testing Hy : 0 > 0y is equivalent to Hy : 6 > 63. By Theorem 7.6.8, the UMPU
level «v test ¢ rejects for u < ¢(t), and accepts if u > ¢(t), which is equivalent to rejecting
if " 22 < ¢(z), since t = > x; = nz. To find the cutoff ¢(z), we solve

a=P, (Z X2 < ¢(X) | X)

= P,, (Z X?—nX?<d(X)| X) subtract a constant

=P, (n—1)8* < d(X) | X), (n—1)s"=> (;—2)* =) a] —na’,

=P, ((n—1)5* <), since S? is independent of X,
—1)5? !

=P, (% < %) , divide by a constant,
90 90

=P (x*(n—1) <c), = cy=x3(n—1).

Thus the rejection rule is:
Z(mi—j)Q <oixi(n—1) = Zx < _+00Xa(”— 1) = c(t).
The power function of this test is:
9 0'(2] 9 JOXa(n 1)/U
o) = P (V-1 < Bzn-1) = | s ().
0
where f(y) is the density of a x?(k).

It is interesting to compare this test to the UMP test ¢3 of H, discussed in TSH Example
3.9.1, for the (much) simpler situation when p is known, and which rejects for > (x; —
@)? < c. Using similar arguments, we find ¢ by solving

Xi — U 2 C
a= P, , (2:()(Z — H)Q < c> = Py <Z ( o0 ) < ?)
0
C
(v <), — c=obin)

0
whence the power function is given by:

501 = o (5 (K52) < ) (1 < LYY
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Plotting these two power functions, we might expect their difference to be small, with
perhaps 5 (o) slightly larger than (o) over most values of o, since ¢} uses more infor-
mation (note that ¢} cannot be implemented without knowledge of p).

7.7. Likelihood Ratio (LR), Wald, and Score Tests

The Neyman-Pearson Lemma naturally suggests the LR as a good test. In the absence
of an optimal test (UMP, UMPU, etc.), we fall back on LR, Wald, and Score tests. A
complete coverage of this subject can be found in Severini (2000), Chs 3 & 4, and we
follow Severini’s compact notation here.

We continue to let £(f) denote the log likelihood based on a sample of size n, where
6= (01,...,04) € Q CRY When needed, we partition 6 = (¢, \), where ¢ = (¢1,...,1,)
denotes the parameter of interest, while A € R%"? is a nuisance parameter. Derivatives
of £(f) w.r.t. 8 are denoted as:

0(6

ly(0) = 88—(‘9>, Jacobian vector (a tensor of dim=1)
20(6

loo(0) = 207(93, Hessian matrix (a tensor of dim=2)

etc. We assume the following (loosely stated) regularity conditions, satisfied by all “nice”
(henceforth called regular) models:

R1. /(f) can be approximated by a 4th order polynomial in § around the true value
0y € Q7

f(@) = f(@o) + 39(90)(9 — 90) + -+ %%999(90)(9 — 90)4 + Rn(e),

with the remainder term satisfying the following condition over some neighbor-
hood Ny of 6j:

SUPge N, |RN(0)|
= 1).
alo -~ O

R2. The first 4 derivatives of £(6), {ly, ..., lgeae}, have joint cumulants which are
O(n), and the vector of sample averages ¢4/1/n obeys the CLT:

lo/vn L N(0,1(60)),

where now, and throughout this chapter, I(6) is as defined in (7.7.4).
R3. For non-negative integers {41, ...,i4} with iy +---+i4 <4, and for {j, k,[,m} €

{0,1,...,d}, one is able to interchange up to 4th order derivatives with integrals
as follows:
it Fia oirtetia
——— P exp{l(0) — ((0 _, =F ——— exp{/(6) — £(0 _ :
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Properties R1-R3 hold in most models of practical interest (and most, if not all, models
covered in this course). Examples include models where the observations are independent
but not identical (e.g., regression and GLM), and models where the observations are
dependent (e.g., some types of stochastic processes).

Bartlett Identities
Property R3 leads in particular to the so-called Bartlett identities. The key to this is the
following equation, which in the scalar 6 case is:

TT0) B exp{t) ~ (0 acg, = B { g5 p110) = 60}, .

Now, since

Enyexp{£(6) — 60} = [ T L0t = [ Lio)s =1,

it implies that, in particular, by (7.7.1) with j = 1,

By { 35 P1100) = €0 o, b = 5, xPLL(0) = €0 o, = 51 =0,

and for general j (and V6,):

o ol
& {89 exp{{(0) — 6(90)}19:90} = 0= 557 Eo exp{l(0) = (00)}o—s,
Thus, in the 7 =1 case,

0
0=FE {% e“f)”(%)\@:@o} E {g(6p)e" @10} = Ety(6o),

and since this holds for every 6y, we obtain the 1st Bartlett Identity: E/¢p(0) = 0.
Similarly, in the j = 2 case,

62
0=F {@ e (0)—E(%) ’090} =F {69966(90)—4(90) + 5366(90)—5(90)} 7

which leads to the 2nd Bartlett Identity: Efpy(6) + Elg(6)? = 0. This generalizes to the
vector 0 case, and for every integer j there is a corresponding identity. The first two
Bartlett identities are:

(7.7.2) Ely(6) = 0,
(7.7.3) Elg(0) + Ely(0)L5(0)T =

Different types of Information
For regular models we have the following types of information-related quantites and
results.
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Score Function: /y(0). The first two Bartlett identities imply that the score
vector has mean zero and its variance is equal to the (expected) Information

matrix:
Ely(6) = 0,
Var[lg(0)] = Ely(0)0e(0)" := Z(0), (Expected Information).
Observed Information: J(0) := —/{yy(f). The 2nd Bartlett identity implies
that:

EJ6)=1(0).
Partial Information: Invoking the 6§ = (¢, \) partition, partition the Informa-
tion matrix accordingly as:

Lo (0) Lyr(0
Z(6) = {fffﬁg@; Ifxgeﬂ’

where, using obvious notation, we have e.g.,
Zua(0) = EL,(0)0A(0)" = —Elyx(0),
and
2
ly(0) = %ﬁf), 0,(0) = 82_(;9)’ Ly (0) = ng%
DEFINITION 7.7.1 (Average Information per observation). For regular mod-
els, we define the average (expected) Information per observation as

(7.7.4) 1(6) = lim %z(e).

The asymptotic normality of the MLE result for regular models is more general
than those in Ch. 6, and allows us to break free from the iid assumption (e.g.,

regression). If 6 denotes the MLE of 6 based on a sample of size n from a regular
model, then

(7.7.5) V(0 —65) = N(0,17'(6y)),

with I(f) as defined in (7.7.4). In particular, if the MLE is based on an iid
sample of size n, then Z(0) = nl(#), whence I(0) coincides with the (expected)
Information per observation of Ch. 6.

DEFINITION 7.7.2 (Partial Information). The partial (expected) Information
for 1, defined as

(7.7.6) Zy(0) = Ly (0) — Zya(0)Zy, ()T (0),

plays the same role for inference on v that Z(6) plays for inference on the entire
6, and can be derived as the appropriate CRLB by generalizing the argument in
Remark 2.4.6. If A is known, then Z,,(0) = Zy, (), so that

Zy(0) — Zyy(9)
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represents the loss of information about ¢ due to the fact that A\ is unknown.
(Similar results hold for the definition of partial observed Information, 7, (6).)
Note that we can define partial Information per observation by replacing Z(6)
I(0) everywhere in (7.7.6), whence for an iid sample, Z(6) = nl,(6).

Let 6 denote the MLE of  based on a sample of size n from a regular model. We describe
the three tests for testing the two-sided hypothesis
H:0=460, vs. K: 0#6,.

The tests reject H for large values of the corresponding statistic (W, W,,, W), and as
we will show next, the asymptotic distribution of each of these under H is x?(d).

(i) LR Test. The test statistic is:

(7.7.7) W =W (6y) := 2[¢(8) — £(6,)].

To derive the asymptotic distribution of W under H, Taylor-series expand £(0) —
£(6p) around 6 = 6, so that

SW = La(00)7 (0~ 00) + (0 00)" Lan(00)(0 — ) + O,(1/v).

Now, from Ch 6 results, and with I; denoting the identity matrix of rank d, we

have:
0—60 = I '(60)ls(00)) + Op(1/v/),
T2(00)0(80) % N(0, 1),
loo(00) = —Z(6h) + Op(Vn).
Substituting these results into the above expression for W/2, we obtain
(7.7.8) W = [T72(60)o(60)] " [Z7/%(80)Cs(60)] + O,(1/v/n),

so that we have an asymptotic chi-square distribution for the LR statistic under
the null hypothesis:

W S x(d)
(i) Wald Test. The test statistic is:
(7.7.9) W = Way(60) == (0 — 00)"Z(0)(0 — 6,).

To derive the asymptotic distribution of W, under H, Taylor-series expand the
LR test statistic W around 6, = 6 (before we expanded around 6 = 6j), so that

—%W = 0y(0)" (0 — ) + %(90 — 0)T2y9(0) (6 — 0) + O,(1/y/n).

Now, since £4(f) = 0 and
—lpo(0) = Z(60) + Op(v/n) = Z() + Op(v/n),
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it follows that
W =Wy + (8o — 0)7 0,(v/n) (6 — 0) +0,(1/+/n) = Wy + O,(1/+/n),
——— ——
Op(1/v/n) Op(1/v/n)
so that W,, has the same limiting distribution as W.
(ii) Score Test. The test statistic is:
(7.7.10) W, = W,(0) := £o(00) T (60) Ly ().

The fact that W has the same limiting distribution as W follows straightfor-
wardly from (7.7.8). (The Score test is also known as the Rao Score Test, or
Lagrange Multiplier Test.)

NOTE 7.7.3. One can use any of the four versions of Information (expected or observed
evaluated at 0y or 6) in the definition of W,, and Wj, namely

~ ~

{Z(600),2(0), T (60), T ()},

without affecting the asymptotics.

Testing only a subset of parameters
Partition 6 = (¥, \), where ¢y € RY is the parameter of interest, and A\ € R4 7 is a

nuisance parameter. The (unrestricted) MLE is § = (¢, \), and let 6, = (1, \,,) denote
the (profile or restricted) MLE of 6 when ¢ is held fixed, which just involves maximizing

((0) over ), ie., A\, = argmax, (1), ). We now wish to test
H: =1y vs. K: +#1y.

The analogous versions of the LR, Wald, and Score Tests are now as follows:

(7.7.11) W =Wi(o) = 2[0(0) — €(0,)),

(7.7.12) Wy =Wauto) = (& —0)"Tu(0) (& — o),

(7.7.13) Wo = Wato) = Lo(0u)" " (O )l (O)-

Using similar arguments as before, it can be shown that now
WS ),

which is also the limiting distribution of W,, and Wj.

One-sided tests
Partition 6 = (¢, \) as above, but ¢ is a scalar (¢ = 1). To test, e.g.,

H: <y vs. K: ¥>y,
use the signed square root of the statistics in (7.7.11)—(7.7.13):
R=R(%o) = sgn(v — o)y W (),
Ry = Ry(¥o) = sgn(¥ — o) v Wau(th),
R, = Ri(to) = sgn(th — o)/ Wi(tho).
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To derive the asymptotics, one can show that (under H)

R(vo) = \| Zu(0) (4 — o) + O,(1/v/n),

and thus, since the first term in the above summand converges to a standard normal, we

obtain
d

R — N(0,1),
with identical conclusions for R, and R,.
Confidence Regions
Construction of confidence regions by inverting each of the tests is immmediate. E.g., if

W (6y) denotes any of the three test (7.7.7), (7.7.9), or (7.7.10), inversion of the two-sided
test leads to the (1 — «) acceptance region

A(6o) = {60 | W () < x3_o(d)}.

Likewise, inversion of the two-sided subset case tests (7.7.11)—(7.7.13), leads to the (1—«)
acceptance region

A(o) = {% | W(th) < X%—Q(Q)}-

EXAMPLE 7.7.4 (Inference for Weibull shape). Consider the following shape-scale parametriza-
tion for the density of a Weibull distribution

folw) = vAOA)  exp {~(Aa)*} I(a > 0), 0= ().

where the parameter of interest ¢ > 0 controls the shape, while the inverse of the nuisance
parameter A > 0 controls the scale. Since this is not an exponential family, we have little
hope of deducing any kind of optimal test. Tedious computations lead to the following
expression for the Information matrix (per oservation):

P G A R K] Iyu(0) T (0
_ i | [ Luw(0) Lypa(0) _ :
I1(0) = [ e f—j] = []/\w(@ In(0)| v =0.5772...( Euler’s constant).
From this we obtain the partial Information
. n (7
Iy(0) = Ly (0) — Lpn(0) I (O) 1y (8), = Zy(0) = nly(0) = EAGEE 1).

The log likelihood based on a random sample of size n is
0(0) = (1, A) = nplog(N) +nlogy + (¢ — 1)t — AVsy, t= Zlogxi, Sy = fo’

Tt is possible to obtain the profile MLE of A as A, = (n/sy)/¥, which upon substitution
leads to the profile log-likelihood

0(8y) = L(¥, \y) = nlog <%> +nloge + (v — 1)t —n.
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This can now be maximized (numerically) for the MLE of ¢ which is then substituted
into the above formulas, yielding the following cascade of results:

/4
) = argmgxﬁ(éw), 85 = fo’, A= j\w = <£> , 0(6) = 0(d, \).

P
P
Straightforward substitution into (7.7.11)—(7.7.13) then leads to:

W() = 2nlog (%) +2 (w — wo) ‘.

872)0

Wi (to) = (wwo _ 1)271 <%2 _ 1) |

Yo , 2 3
Wi(to) = (%ZZ log i _ % - 1) (%) (%2 _ 1) .

A two-sided level a test of H : 1 = 1y then rejects for W (o) > x?__ (1), whereas the

one-sided test of H : 1 < 1y rejects for R(vg) = sgn(zﬁ — Po) /W (o) > 214, etc.
To illustrate construction of confidence intervals, inversion of Wald leads to the (1 — «)
acceptance region

Atho) = {% | W (o) < Xia(l)}'

EXAMPLE 7.7.5 (Neyman Smooth Test). Suppose we have a family of densities from a
full-rank k-parameter exponential family

fofa) = c(O) exp{ Y 05150} = exp{I_ 03t (x) ~loge(0) '},

where § € Q C R¥ is the natural parameter set (of which # = 0 is an interior point), and
where the ¢;(x) are a set of orthonormal functions satisfying:

1, 1=y,
0, i# 7.
(The notation Ey and Covy here means that expectations are taken with respect to the
measure for the case § = 0, which is a Unif(0, 1).) By Theom 2.4.7 in canonical form, we

identify A(0) = —logc(f), whence the first two moments for the vector t = (t1,...,t)
are:

Eo(tj(X)) =0,  Covo(ti(X),t;(X)) = diy = {

0A(0) 1 0c(0)
.7.14 =F = 27 - _
(7.7.14) 0=E(t) 0 |,_, <O 96 |,
0?A(0) 0 1 0c(0)
7.1 I, = - _ ot _
(7.7.15) w=Covoll) = g |, = 0 l OR } o
For a random sample x4, ..., x, from fy(x), and in the context of goodness-of-fit, Neyman

(1937) proposed (what is now known to be) a Score test for H : § = 0 vs. K : 6 # 0.
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Note that now the CSS is T' = (D> t1(x;),..., Y tx(x;)), and the new “A” function is
An(0) = nA(0), so that the log-likelihood and its derivative are:

A
00) =0T —nA(h), ly(6) :T—naa—gp).
Thus, under H, we have from (7.7.14) that ¢y(0) = T, and (7.7.15) implies that
D*A(6)
O =" g0 |,_, ="

which leads to
1
Wy = £5(0)Z(0) " 4p(0) = =T'T % ¥2(k),  under H.
n

EXAMPLE 7.7.6 (Poisson GLM). In this log-linear regression model for counts, we observe
the pairs {(x1,21), ..., (s, yn)}, where the y; are independent Poisson with means p; =
exp{\ + ¢x;}, and the x; are known covariates. The joint density of the y; is therefore
seen to be the 2-parameter exponential family,

f(y) =exp {?/)t + s — ¢ Z BWZ} H %1{0,1,...}@1)7 §= Zyu L= Z%‘yz‘,

and the goal is to test if there is an effect from the covariates, i.e. H : ¢ =0vs. K : ¢ # 0.
Since this is in canonical form for § = (1, \) with (s, t) the CSS, we make the identification
A(0) = e*u(vp), where u(zp) = > e¥* whence the Information matrix for the model is
obtained straightforwardly as:

D*A(6 u v @ 2 Y
206) = St = |ott) o] o) = S, wiw) = Fate

and since this is a regular model, we have the asymptotic distribution for the MLE of ¢
as in (7.7.5). The partial information is:

Tp(0) = Zyp(0) — TA(0)/Tan(0) = e w () — v*(¢) [u()].
Now, since £(0) = ¢t + As — A(f) + constant, we have from the score equations
6s(0) = t—eMv(y) =0,
0O(0) = s—eu@)=0, = A;=log(s/u(¥)),

but we must then solve for the MLE of 1) numerically to obtain: 6 = (1&, j\w), leading to,

Uby) = L, Ay) = Pt + slog(s/u(ih)) — s,
() = L, A;) =t + slog(s/u(t))) — .

and,
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oL

where we use the shorthand @
null value of ¢y = 0: 0y, = 6y = (0,
leads to:

), etc. In addition, we will need the MLEs at the
0), where \g = Ay, = log(s/n) = log(y), which

pos

lp(60) = t—yz, and  Ty(6y) =7 [Z a? — mﬂ .

From the above results, we can now calculate the triad of statistics, all of which are x?(1)
under H:

e LR: ) R )
W(0) = 2[(6) — €(6,)] = 2 [tl/z + slog(n/a)} .
o Wald: .
Wi (0) = (& = 6o Tu(d) = = [w _ %] g
e Score: R
Ws(0) = £4(60)°/Z4(6) = %

It would be interesting to compare this triad of tests with the UMPU, Case (4) of the
multiparameter EF, with critical function:

1, t <ci(s) ort > cy(s),

71(3)7 t= 01(8),

/72<S)7 t= 02(3)7

0, otherwise,

where the cutoff points are determined from Ey—o(¢|S) = a and Ey—o(¢T|S) = aEy—o(T|S).

However, the [[,(y;!)~! term in the expression for f(y) appears to make the calculation
of the joint distribution of (7', .S) intractable!
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7.8. Discussion

e The LR, Wald, and Score statistics can be shown to have a non-central chi-square

asymptotic distribution under (local) alternatives (Severini, 2000, Ch 4).

The asymptotic normality result for the MLE in (7.7.5) holds quite generally
beyond iid data. Two common instances that considerably extend our range of
applications include: (i) regression models where the data are independent but
not identically distributed, and (ii) stationary time series models where the data
are not independent but are identically (marginally) distributed.

Example 7.7.6 is at the threshold of tractability in terms of what can feasibly be
analytically computed for the sub-optimal LR, Wald, and Score tests. In prac-
tice (implemented in software packages) the process is automated by computing
the MLEs numerically, and substituting the expected by the observed Informa-
tion throughout, Z(#) — J(6), which requires only numerical evaluation of the
Hessian of £(0).

For small n it may be necessary to compute the null distribution of the sub-
optimal LR, Wald, and Score test statistics via Monte Carlo simulation, since
the asymptotic x? may be unreliable.

Hypothesis testing in the Big Data era (Efron, 2010). The 21st century has
ushered in the era of high-dimensional testing, where dim(f) = d > n. One
successful way forward here has been the formulation of this problem into a
large-scale testing framework, where one constructs many simultaneous tests and
tries to control the error rate. E.g., Efron (2010) describes a typical microarray
study on the effect of d = 6,033 genes on n = 102 subjects (52 with disease and
50 without, serving as controls). The effect of each gene is then investigated
individually by carrying out d two-sample t-tests. The struggle here has been
twofold: (i) adapting existing multiple comparison procedures (e.g., Tukey’s
MCP) to cope with a number of comparisons far in excess of what they were
designed for, and (ii) devising new types or definitions of error rate. The current
best recommendations from Efron (2010) are usage of: (i) adapted Family Wise
Error Rate (FEWR) control procedures, and (ii) the False Discovery Rate (FDR)
paradigm proposed by Benjamini & Hochberg (1995).
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