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Outline (new stuff in “blue” highlight)

Classical Setup: Test a one-sided hypothesis for a single parameter
via Likelihood Ratio, Score, and Wald tests.

Goal: Accurate p-values.

Classical Solution: Use asymptotics or simulation!

Non-Classical Setup: Required Type I error rate is α ∼ 10−7.

Solution 1 (asymptotic): Derive high-order Edgeworth approximations
to p-values.

Solution 2 (asymptotic): Derive high-order saddlepoint
approximations to p-values (with new twists).

Compare accuracies on simulated data (bump-hunting expmts).

Practical implementation: going beyond the toy problem. . .
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Motivation: Discovery of Higgs Boson (The God Particle, Nobel Prize 2013)
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Testing for Signal Presence: Mixture Model

Model 1: Overall density is a mixture of signal s(x) and background
b(x) densities:

p(x |α) = αs(x) + (1− α)b(x) (1)

Signal fraction α based on IID sample x1, . . . , xn is estimated by
maximizing the log-likelihood

`(α) =
n∑

i=1

log p(xi |α). (2)

Leading to the MLE
α̂ := arg max

α∈R
`(α) (3)

Goal: produce accurate tests of H0 : α = 0 vs. H1 : α > 0.

Only unknown parameter is α ∈ R.
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Testing for Signal Presence: Poisson Model

Model 2: Sample size is not a priori known, so treat data x1, . . . , xN
as arising from a Poisson process with intensity function:

Λ(x |λ) = λs(x) + µb(x) (4)

Signal fraction λ is estimated by maximizing the log-likelihood

`(λ) = −(λ+ µ) +
N∑
i=1

log Λ(xi |λ) (5)

Leading to the MLE
λ̂ := arg max

λ∈R
`(λ) (6)

Goal: produce accurate tests of H0 : λ = 0 vs. H1 : λ > 0.

Only unknown parameter is λ ∈ R.
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Example: Flat/Decaying Background Superimposed With Gaussian Signal

Background is either standard Uniform or Exponential on [0, 1]:

b(x) =

{
1, if x ∈ [0, 1]
0, if x 6∈ [0, 1]

, b(x) =

{
e−x/(1− e−1), if x ∈ [0, 1]
0, if x 6∈ [0, 1]

Signal is truncated Gaussian on [0, 1]:

s(x) =

 e−
(x−µ)2

2σ2

/∫ 1
0 e−

(y−µ)2

2σ2 dy , if x ∈ [0, 1]

0, if x 6∈ [0, 1]

Whenever specific settings of the signal are needed, we use

µ = 0.5, and σ = 0.1.

Toy problem! Everything known except mix proportion (α or λ). . .
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Notation

For α and α̂ (similar statements hold for λ and λ̂ with n 7→ µ):

`i (α) = ∂i`/∂αi , the i-th derivative of `(α)

J(α) = −`2(α)

Expected information number: I (α) = E[J(α)]

Observed information number: J(α̂) = −`2(α̂)

Assume usual regularity conditions for consistency and asymptotic
normality of α̂ are satisfied:

√
n(α̂− α)

d−→ N (0, I(α)−1), I(α) = lim
n→∞

1

n
I (α)

=⇒ α̂ ∼̇ N (α, σ2
α̂(α)), σ2

α̂(α) = I (α)−1

(By not restricting α ∈ [0, 1] we avoid “exotic” asymptotics at the
boundaries...)
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A Gamut of Tests for α

In lack of a UMP test, we have the following:

Table: Promising statistics for tests on α.

Method Statistic Value

Likelihood Ratio TLR 2[`(α̂)− `(0)]
Wald (Expected) TW α̂2I (0)
Wald (Observed) TW2 α̂2J(α̂)
Score TS `1(0)2/I (0)
Wald-type 3 TW3 α̂2/σ2

3

Wald-type 4 TW4 α̂2/σ2
4

The Wald-type 3 & 4 statistics are variants of TW2 (used by physicists)
that use shortcuts for computing J(α) so as to avoid differentiating `(α).
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Higher-Order Asymptotics

For one-sided testing use signed version of any of the statistics (say
T ) in the Table:

R = sgn(α̂)
√
T .

Under H0, to first order R ∼ Z , where Z ∼ N (0, 1), whence

p -value = P(Z > r), r = sgn(α̂)
√
t

In general, Rn ∼ Z to k-th order, means that

approx error = Rn − Z = Op(n−k/2)

⇒ P(Rn ≤ r) = Φ(r) +
a1,n

n1/2
+

a2,n

n1
+

a3,n

n3/2
+ · · ·+

ak−1,n

n(k−1)/2

+ O(n−k/2)
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Tools for Higher-Order Asymptotic Theory (e.g., Severini, 2000)

Taylor expansions of `(α) near true value of α

Joint cumulants for the derivatives of `(α) under H0; in our case can
express everything as a function of:

Vk = E`k(0), k = 1, 2, . . .

Edgeworth-type series: approx pdf for X ≈ N (κ1, κ2) via the
Gram-Charlier series

f (x) =
φ(z)
√
κ2

[
1 +

∞∑
k=3

β′kHk (z)

]
, z =

x − κ1√
κ2

Hj(z) are the Hermite polynomials.

Coefficients β′j are chosen to match cumulants κj of X (by inversion
of its CGF K (s) = logE exp{sX}).
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Edgeworth Series Approximation for CDF

CDF of X obtained by integrating f (x), grouping together terms in
powers of n−1/2, resulting in the Edgeworth expansion.

For a “typical” likelihood-based statistic we obtain

F (x) = Φ (z)− φ (z)

[
11∑
k=2

βkHk (z) +O(n−5/2)

]
, z =

x − κ1√
κ2

,

Table: Value of coefficient of βkκ
(k+1)/2
2 in Edgeworth expansion for CDF of R.

Statistic Value of k
R 2 3 4 5 6 7 8 9 10 11

R 6= RLR
κ3
6

κ4
24

κ5
120

10κ2
3+κ6

720
κ3κ4

144

8κ3κ5+5κ2
4

5760

κ2
3

1296

κ2
3κ4

1728
0

κ4
3

31104
R = RLR

κ3
6

κ4
24

0 0 0 0 0 0 0 0
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Relating Cumulants of Log-Likelihood to those of Statistic

The challenge now is to express (approximate) the κj (which are
unknown) in terms of the Vk (which can be computed)!!!

Has to be done case-by-case for each statistic R.

Start from suitable Taylor expansions in probability for α̂, the
maximizer of `(α), and use some tricks...

Required A LOT OF BOOKKEEPING (20th century).

In 21st century this can be replaced with careful programming of a
symbolic algebra system (Maple/Mathematica).

Above challenge has been worked out to 3rd order for classical
statistics (LR, Wald, Score), by assuming X ≈ N (0, 1), so we:

assumed X ≈ N (κ1, κ2) (gives greater accuracy), and
worked out 5th order expansions for all statistics in Table 1.
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Details of Challenge...

Represent the log-likelihood derivatives by

dk`(α)

dαk

∣∣∣∣
α=0

= nVk +
√
nZk , recall Vk := E`k(0)

and Zk is an Op(1) random variable with zero mean.

Construct high order Taylor expansion for `(α) at α = 0, and solve for
α̂ in terms of Vk and Zk :

√
nα̂ =

kmax∑
k=0

ak(Z ,V )n−k/2 +Op(n−(kmax+1)/2)

The multivariate polynomials ak(Z ,V ) are functions of (Z1,Z2, . . .)
and (V1,V2, . . .).
These polynomials are complicated but only need to be derived once
(e.g., using symbolic computing).
They do not depend on the model or statistic!
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Example: For Score Statistic RS = Z1/
√
−V2

Very simple, and holds for all orders of accuracy!!!

All other statistics are more complicated. . .

Makes it possible to analytically derive all cumulants.

Cumulants depend only on following (dimensionless & location-scale
invariant) expressions:

γ =
V3

2(−V2)3/2
, ρ = − V4

6V 2
2

, ξ =
V5

24(−V2)5/2
, ζ =

V6

120V 3
2

Table: Approximations to the first 6 cumulants of RS for the two models under
consideration. The error in these approximations is O(n−5/2) (Mixture model) or
O(µ−5/2) (Poisson model).

Cumulant
Model κ̂1 κ̂2 κ̂3 κ̂4 κ̂5 κ̂6

Mixture 0 1 γ/
√
n (ρ− 3)/n (ξ − 10γ)/n3/2 (30 + ζ − 10γ2 − 15ρ)/n2

Poisson 0 1 γ/
√
µ ρ/µ ξ/µ3/2 ζ/µ2
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But Wait: why do we need higher-order asymptotics?

When n is small (not necessarily the case in these experiments).

When Type I error rate (qo) is very small..., how small?

In “signal-hunting” particle physics experiments the gold standard is
5σ:

q0 = P(Z > 5) = 2.87× 10−7

This puts us way out in the tail of the N (0, 1)...

(And is the reason why simulation is undesirable; to get 100 values
exceeding q0 requires ∼ 109 runs!)
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Quantifying Deviations From Normality

5th order Edgeworth-approx: FR(r)− F edge
R (r) = O(n−5/2).

Consider normal approx error

∆R(r) = r − r̃ , r̃ = Φ−1(F edge
R (r))

Implies:

r̃ = r to an accuracy of O(n−5/2) under H0

If R is exactly N (0, 1):
∆R(r) = 0

If R differs greatly from N (0, 1):

large values of ∆R(r)
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Example: ∆R(r) for Poisson Model With Exp. Background (under H0)

0 1 2 3 4 5

−
0.

2
0.

2
0.

4
0.

6
0.

8

r

∆R
(r)

LR Statistic

0 1 2 3 4 5

−
0.

2
0.

2
0.

4
0.

6
0.

8

r

∆R
(r)

Score Statistic

0 1 2 3 4 5

−
0.

2
0.

2
0.

4
0.

6
0.

8

r

∆R
(r)

Wald Statistic

2nd order Edgeworth
3rd order Edgeworth
4th order Edgeworth
5th order Edgeworth
SPA
Simulation

Poisson Model
Exponential Background

(µ = 20)

alex.trindade@ttu.edu High-Order Inference for Signal Testing 17 / 28



Example: P-values at r = 5 for Mixture Model With Unif. Background (under H0)
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Saddlepoint Approximation (SPA) for CDF

SPA is an efficient “automatic” procedure to perform the inversion:

K (s) =
∞∑
j=1

s j

j!
κj 7→ F (x) = P(X ≤ x)

(k + 1)-th order SPA for the CDF of X̄n (Daniels, 1987):

F̂n,k(x) = Φ(ŵ
√
n)− φ(ŵ

√
n)
[ c0

n1/2
+

c1

n3/2
+ · · ·+ ck

nk+1/2

]
The (asymptotic) truncation error of F̂n,k(x) is:

F̂n,k(x)

F (x)
= 1+O(n−k−3/2) ⇐⇒ F (x)−F̂n,k(x) = O(n−k−3/2)
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Saddlepoint vs. Edgeworth Approximation (SPA vs. Edge)

Since we have {κ̂1, . . . , κ̂6} for R (Table 3), SPA with n = 1 is an
alternative to the Edgeworth approximation of p-values.

Starting with K̂m(s) =
∑m

j=1 κ̂js
j/j!, we note from Figs 1 & 2 that

5th order Edge and SPA give same F (r)... why?

Theorem

Let Ĝ1,k(x) be estimated F̂1,k(x) by using K̂m(s) =
∑m

j=1 κ̂js
j/j! with

κ̂j = κj +Op(n−α). Then:

Ĝ1,k(x)

F (x)
= 1 +Op(n−min{α,(m−1)/2,k+3/2})

In our case, m = 6 and α = 5/2, so if we take k = 1, we get:

Ĝ1,1(x)

F (x)
= 1 +Op(n−5/2)
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SPA vs. Edge: Convexification of CGF

Thus with K̂6(s), both Edge and SPA give same 5th order estimated
F (r)... provided CGF is convex!

Edge: doesn’t care about convexity, but requires new painstaking
analytical computations as m changes...

SPA: remains essentially the same as m changes, but CGF must be
convex...

Idea: convexify CGF by doubling number of cumulants:

{κ̂1, . . . , κ̂6} = approx cumulants on hand (rest are O(n−5/2))

{κ7, . . . , κ12} = solve for these by minimizing

12∑
j=7

κ2
j

subject to convexity (quadratic programming)
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Example: P-values at r = 5 for Mixture Model With Unif. Background (under H0)
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Summary Remarks

SPA vs. Edge: if both use same K̂6(s), and it’s convex, then

F edge
R (r) ≈ F spa

R (r).

If CGF not convex, then SPA can easily be “fixed”, whereas Edge
may give results of dubious quality...

SPA CDF: guaranteed to be positive; Edge can be negative...

Score statistic has a very simple asymptotic expansion, which makes
it (relatively) easy to derive any number of (estimated) cumulants!

Application of SPA to these instances is immediate, whereas Edge
requires substantial analytical effort!!!

(Question: Is it possible to combine these good properties of Score
statistic with efficiency of LR statistic into a new statistic?)
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Going Beyond Toy Problem: Nuisance Parameters in Signal & Background

Doable: s(x) & b(x) 7→ b(x |φ).

extend everything we have done to the nuisance parameter setting
(multivariate Edge/SPA).

Problem: s(x) 7→ s(x |θ) means θ is not identifiable under H0:

classical inference for treating nuisance parameters then breaks down...
Davies (Biometrika, 1987): appropriate p-value is an excursion
probability

p-value = P(max
θ∈Θ

R(θ) > c)

Theory of Random Fields (TRF): emerged as only analytical solution
so far (large-scale searches in neuroimaging, astrophysics, etc.)

R(θ) is viewed as Gaussian random field over manifold Θ ⊂ Rd

φ has been profiled out of R(θ,φ) : φ 7→ φ̂
provides closed-form approximaton when c is large...
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TRF: Adler & Taylor (2007), “Random Fields and Geometry”, Springer

Excursion set of field above level c:

Ac = {θ ∈ Θ : R(θ) > c}

Euler characteristic of excursion set:

φ(Ac) = geometric property of field

Fundamental result in TRF:

E[φ(Ac)] =
d∑

i=0

ai fi (c)

ai : positive constants (to be determined by Monte Carlo)
fi (·): known “universal” functions

For large c : (Taylor et al., Annals of Probability, 2005)

p-value = P(max
θ∈Θ

R(θ) > c) ≈ E[φ(Ac)] ≡ pglobal
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Nuisance in Signal & Background: Improving TRF

(Volobouev, I. & Trindade, A., JINST, 2018)

Suppose θ 6= 0 & φ 6= 0

Solution 1 (straightforward): treat all parameters via TRF in
conjuction with Edge/SPA O(n−5/2) normalized versions of LR
statistic

r 7→ r̃ = Φ−1(F̂RLR
(r))

Solution 2 (exotic): adjust global significance of test statistic, leading
to (conservative) estimate of pglobal in context of TRF...

pglobal = P(RLR(θ̂) > r(θ̂))

r(θ) is observed (local) value of RLR(θ) computed from sample,
θ̂ = arg maxθ∈Θ r(θ).
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Algorithm for Solution 2: details...

Normal approx error for each observed (local) r ≡ r(θ) as before:

∆R(r(θ)) = r(θ)− r̃(θ)

Locate:
θ∗ = arg max

θ∈Θ
∆R(r(θ))

Search can use same grid as TRF search for θ̂ = arg max r(θ).

Calculate global significance of signal pglobal via TRF, and express it
in terms of the global r :

rglobal = Φ−1(1− pglobal)

Adjust global r :
radjglobal = rglobal −∆R(r(θ∗))

Global (adjusted) p -value is then:

padjglobal = 1− Φ(radjglobal)
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