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Outline (new stuff in “blue” highlight)

o Classical Setup: Test a one-sided hypothesis for a single parameter
via Likelihood Ratio, Score, and Wald tests.

Goal: Accurate p-values.
Classical Solution: Use asymptotics or simulation!

Non-Classical Setup: Required Type | error rate is o ~ 1077.

Solution 1 (asymptotic): Derive high-order Edgeworth approximations
to p-values.

@ Solution 2 (asymptotic): Derive high-order saddlepoint
approximations to p-values (with new twists).

e Compare accuracies on simulated data (bump-hunting expmts).

@ Practical implementation: going beyond the toy problem. ..
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Motivation: Discovery of Higgs Boson (The God Particle, Nobel Prize 2013)
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Testing for Signal Presence: Mixture Model

@ Model 1: Overall density is a mixture of signal s(x) and background
b(x) densities:
p(x|ar) = as(x) + (1 — a)b(x) (1)
@ Signal fraction « based on IID sample xi, ..., x, is estimated by
maximizing the log-likelihood

) = log p(xila). (2)
i=1

@ Leading to the MLE

& = arg rgeaﬁgf(a) (3)

@ Goal: produce accurate tests of Hp:a=0vs. Hi:a > 0.

@ Only unknown parameter is a € R.
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Testing for Signal Presence: Poisson Model

@ Model 2: Sample size is not a priori known, so treat data xy, ..., xy
as arising from a Poisson process with intensity function:

A(x|[A) = As(x) + pub(x) (4)
@ Signal fraction A is estimated by maximizing the log-likelihood
N
(N = —(A+ )+ ) log Alxi[A) (5)
i=1
@ Leading to the MLE A
A= arg Teaﬂgé(/\) (6)

Goal: produce accurate tests of Hg: A=0vs. Hi: A > 0.

Only unknown parameter is A € R.
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Example: Flat/Decaying Background Superimposed With Gaussian Signal

e Background is either standard Uniform or Exponential on [0, 1]:

[ 1, ifxel0,1] [ eX/(1—eY), ifxel0,1]
b(X)_{o, if x ¢ [0,1] b(X)_{o, if x ¢ [0,1]

e Signal is truncated Gaussian on [0, 1]:

(x—1)? )2
e_mr‘;/fol T dy . ifxelo 1]
0, if x € [0,1]

s(x) =

@ Whenever specific settings of the signal are needed, we use
w=0.5, and o=0.1

@ Toy problem! Everything known except mix proportion (c or A)...
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For o and & (similar statements hold for A and A with n s ):
o (i(a) = 0'0/0a, the i-th derivative of £()
o J(a) = —lr(a)
o Expected information number: /(a) = E[J(«a)]
e Observed information number: J(&) = —{2(&)

Assume usual regularity conditions for consistency and asymptotic
normality of & are satisfied:

Vi@ —a) -5 N0, Z(0) Y, T(a) = lim ~i(a)

= & < N(o,03(0)),  o5(a) =1(a)”!

(By not restricting « € [0, 1] we avoid “exotic” asymptotics at the
boundaries...)
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A Gamut of Tests for «

In lack of a UMP test, we have the following:

Table: Promising statistics for tests on a.

Method Statistic Value
Likelihood Ratio TR 2[¢(&) — £(0)]
Wald (Expected) Tw &21(0)
Wald (Observed)  Twa» a2 J(&)
Score Ts ¢1(0)%/1(0)
Wald-type 3 Tw3 0“42/(7%
Wald-type 4 Twa &%/o?

The Wald-type 3 & 4 statistics are variants of Ty (used by physicists)
that use shortcuts for computing J(«) so as to avoid differentiating ¢(«).
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Higher-Order Asymptotics

@ For one-sided testing use signed version of any of the statistics (say
T) in the Table:
R = sgn(&)V'T.

e Under Hy, to first order R ~ Z, where Z ~ N(0, 1), whence
p-value = P(Z > r), r =sgn(&@)V't
@ In general, R, ~ Z to k-th order, means that

approx error = R, — Z = O,(n~*/2)

ai,n an as,n ak—1,n
:>P(Rn§r):¢(r)+n1/2+n1 +n3/2+"'+m
+ O(n*/?)
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Tools for Higher-Order Asymptotic Theory (e.g., Severini, 2000)

e Taylor expansions of /(«) near true value of «

e Joint cumulants for the derivatives of ¢(«) under Ho; in our case can
express everything as a function of:

Vi =E(0), k=1,2,...

e Edgeworth-type series: approx pdf for X ~ N (k1, k2) via the
Gram-Charlier series

_(2)
f(x) = NG

X — K1

y z ,—,{12

1+ BiH (2)
k=3

@ Hj(z) are the Hermite polynomials.

o Coefficients ﬂj’- are chosen to match cumulants x; of X (by inversion
of its CGF K(s) = log E exp{sX}).
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Edgeworth Series Approximation for CDF

o CDF of X obtained by integrating f(x), grouping together terms in
powers of n~1/2, resulting in the Edgeworth expansion.

@ For a “typical” likelihood-based statistic we obtain

X — K1

11
F(x)=9(2) = o(2) |D_BiH (2) +O(n )|, z= ;
kz:; kHi NG

Table: Value of coefficient of ﬂkmgkﬂ)/z in Edgeworth expansion for CDF of R.

Statistic Value of k
R 2 3 4 5 6 7 8 9 10 11
R+R K3 L Kg 10rc:2,’+n6 K3kyg 8~3m5+5m£ n% n%m; 0 ng
LR 5. 24 120 720 144 5760 1296 1728 31104
R=Rgr | 2 e 0 0 0 0 0 0 0 0

High-Order Inference for Signal Testing
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Relating Cumulants of Log-Likelihood to those of Statistic

@ The challenge now is to express (approximate) the ; (which are
unknown) in terms of the Vj (which can be computed)!!!

@ Has to be done case-by-case for each statistic R.

@ Start from suitable Taylor expansions in probability for &, the
maximizer of ¢(«), and use some tricks...

@ Required A LOT OF BOOKKEEPING (20th century).

@ In 21st century this can be replaced with careful programming of a
symbolic algebra system (Maple/Mathematica).
@ Above challenge has been worked out to 3rd order for classical
statistics (LR, Wald, Score), by assuming X ~ N(0, 1), so we:
o assumed X &~ N(k1,k2) (gives greater accuracy), and
o worked out 5th order expansions for all statistics in Table 1.
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Details of Challenge...

@ Represent the log-likelihood derivatives by

d“t(a)

Jok = nVy ++/nZ, recall  Vj := E£,(0)

a=0
and Zj is an Op,(1) random variable with zero mean.

o Construct high order Taylor expansion for ¢(c) at a = 0, and solve for
& in terms of Vi and Z:

kmax

V=37 aK(Z, V)nH2 4 Op( et )/2)
k=0

o The multivariate polynomials ax(Z, V) are functions of (Z1, Za,...)
and (\/17 V2, .. )

@ These polynomials are complicated but only need to be derived once
(e.g., using symbolic computing).

o They do not depend on the model or statistic!
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Example: For Score Statistic Rs = Z1/v/— Vs

@ Very simple, and holds for all orders of accuracy!!!
@ All other statistics are more complicated. . .
@ Makes it possible to analytically derive all cumulants.

e Cumulants depend only on following (dimensionless & location-scale
invariant) expressions:

Vs Vy Vs Ve

Tt wEE P e ST aw CT 1202

Table: Approximations to the first 6 cumulants of Rs for the two models under
consideration. The error in these approximations is O(n~>/2) (Mixture model) or
O(u~>/?) (Poisson model).

Cumulant
Model | A1 A2 R3 R4 &5 &g
Mixture 0 1 v//n (p—3)/n (& —10v)/n%/? (30 + ¢ — 1042 — 15p)/n?

0 1 /B o/ &/u3? ¢/u?

Poisson
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But Wait: why do we need higher-order asymptotics?

When n is small (not necessarily the case in these experiments).

When Type | error rate (q,) is very small..., how small?

In “signal-hunting” particle physics experiments the gold standard is
50:
qo=P(Z >5)=287x10""

This puts us way out in the tail of the A/(0,1)...

(And is the reason why simulation is undesirable; to get 100 values
exceeding qo requires ~ 10° runs!)
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Quantifying Deviations From Normality

@ 5th order Edgeworth-approx: Fgr(r) — Fﬁ,dge(r) = O(n~%/2).

@ Consider normal approx error
AR(r)=r—F,  F=o"YFF¥(r))
o Implies:
F = r to an accuracy of O(n~>/?) under H,

o If R is exactly N(0,1):
AR(r)=0

o If R differs greatly from A/(0,1):

large values of AR(r)
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Example: AR(r) for Poisson Model With Exp. Background (under )

LR Statistic Score Statistic

BR(r)
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BR(r)
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Example: P-values at r = 5 for Mixture Model With Unif. Background (under #)
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Saddlepoint Approximation (SPA) for CDF

@ SPA is an efficient “automatic” procedure to perform the inversion:

[e.o]

K(s) = Zjﬁj o F(x) = P(X < x)

o (k + 1)-th order SPA for the CDF of X,, (Daniels, 1987):
. ~ ~ ()] (5] (o%
Fak(x) = ®(wv/n) — ¢(w+/n) [m tap Tt W}

@ The (asymptotic) truncation error of l:',,yk(x) is:

”7"(X):1+0(n—k—3/2) = F(x)=Fax(x) = 0(n*73/2)
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Saddlepoint vs. Edgeworth Approximation (SPA vs. Edge)

@ Since we have {R1,...,Re} for R (Table 3), SPA with n=1is an

alternative to the Edgeworth approximation of p-values.
e Starting with K,(s) = PRy #js’/j!, we note from Figs 1 & 2 that
5th order Edge and SPA give same F(r)... why?

Let Gy k(x) be estimated Fy x(x) by using Ki(s) = Y7, &/ /j! with
Rj = kj+ Op(n~). Then:

él,k(x) _ —min{a,(m—1)/2,k+3/2}
W =1 aF Op(n )

@ In our case, m=6 and o = 5/2, so if we take k = 1, we get:

G11(x)

_ n5/2
FOx) 1+ Op( )
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SPA vs. Edge: Convexification of CGF

e Thus with Kg(s), both Edge and SPA give same 5th order estimated
F(r)... provided CGF is convex!

o Edge: doesn't care about convexity, but requires new painstaking
analytical computations as m changes...

@ SPA: remains essentially the same as m changes, but CGF must be
convex...

o ldea: convexify CGF by doubling number of cumulants:

{#1,...,Re} = approx cumulants on hand (rest are O(n~5/2))

{K7,...,Kk12} = solve for these by minimizing
12
2
2.5
J=T

subject to convexity (quadratic programming)

alex.trindade@ttu.edu High-Order Inference for Signal Testing



Example: P-values at r = 5 for Mixture Model With Unif. Background (under #)

CGFs: Wald, Mixture, Uniform, n = 20 Delta(R): Wald, Mixture, Uniform (n=20)
o © 4
© \'| — Asymptotic N(0,1) J e
_ v ~-- Deg. 6 approx /|
- - - Deg. 12 approx (convex) |
* SR
° SPA 6 cumulants
E E - = SPA 12 cums convex
° - = Edgeworth 5th order
S —— Simulation
°
T T T T
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s r

Delta(R): Score, Mixture, Uniform (n=20)
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Summary Remarks

@ SPA vs. Edge: if both use same Kg(s), and it’s convex, then
FRE(r) = FP2(r).

o If CGF not convex, then SPA can easily be “fixed”, whereas Edge
may give results of dubious quality...

@ SPA CDF: guaranteed to be positive; Edge can be negative...

@ Score statistic has a very simple asymptotic expansion, which makes
it (relatively) easy to derive any number of (estimated) cumulants!

@ Application of SPA to these instances is immediate, whereas Edge
requires substantial analytical effort!!!

@ (Question: Is it possible to combine these good properties of Score
statistic with efficiency of LR statistic into a new statistic?)
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Going Beyond Toy Problem: Nuisance Parameters in Signal & Background

e Doable: s(x) & b(x) — b(x|®).
o extend everything we have done to the nuisance parameter setting
(multivariate Edge/SPA).
@ Problem: s(x) +— s(x|@) means @ is not identifiable under :
o classical inference for treating nuisance parameters then breaks down...
e Davies (Biometrika, 1987): appropriate p-value is an excursion
probability
-value = P R(6
p-value (gneacz)( (0) > ¢)

e Theory of Random Fields (TRF): emerged as only analytical solution
so far (large-scale searches in neuroimaging, astrophysics, etc.)
o R(8) is viewed as Gaussian random field over manifold ® C R
o ¢ has been profiled out of R(0,¢) : ¢ — ¢
@ provides closed-form approximaton when c is large...
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TRF: Adler & Taylor (2007), “Random Fields and Geometry”, Springer

@ Excursion set of field above level c:
Ac={0 €O :R(0) > c}
@ Euler characteristic of excursion set:
¢(Ac) = geometric property of field

@ Fundamental result in TRF:

d

E[p(Ac)] = aif
i=0

e a;: positive constants (to be determined by Monte Carlo)
o fi(-): known “universal” functions

e For large c: (Taylor et al., Annals of Probability, 2005)
p-value = P(reneaé R(8) > c) = E[¢(Ac)] = Pglobal
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Nuisance in Signal & Background: Improving TRF

(Volobouev, I. & Trindade, A., JINST, 2018)

Suppose @ £ 0 & ¢ #0
@ Solution 1 (straightforward): treat all parameters via TRF in
conjuction with Edge/SPA O(n~°/2) normalized versions of LR
statistic
re 7= 07 (Fr(r)

@ Solution 2 (exotic): adjust global significance of test statistic, leading
to (conservative) estimate of pgiopas in context of TRF...

Pglobal = P(RLR(é) > r(é))

r(0) is observed (local) value of Rir(f) computed from sample,
0 = argmaxgeo r(6).
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Algorithm for Solution 2: details...

e Normal approx error for each observed (local) r = r(6) as before:
AR(r(0)) = r(0) — 7(0)
o Locate:

0* = arg max AR(r(9))

o Search can use same grid as TRF search for § = argmax r(f).
Calculate global significance of signal pgjopa via TRF, and express it
in terms of the global r:

I'global = cbil(l - pglobal)

Adjust global r: _
ool = Tglobal — AR(r(07))
Global (adjusted) p-value is then:

adj adj
Pglobal = 1-— cl)(rglobal)
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THE END!
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